Solar connections of geoeffective magnetic structures

被引:68
作者
Gopalswamy, N. [1 ]
机构
[1] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
基金
美国国家航空航天局;
关键词
Coronal mass ejections; Magnetic clouds; Interplanetary CMEs; Geomagnetic storms; Solar sources; Geoeffectiveness;
D O I
10.1016/j.jastp.2008.06.010
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Coronal mass ejections (CMEs) and high-speed solar wind streams (HSS) are two solar phenomena that produce large-scale structures in the interplanetary (IP) medium. CMEs evolve into interplanetary CMEs (ICMEs) and the HSS result in corotating interaction regions (CIRs) when they interact with preceding slow solar wind. This paper summarizes the properties of these structures and describes their geoeffectiveness. The primary focus is on the intense storms of solar cycle 23 because this is the first solar cycle during which simultaneous, extensive, and uniform data on solar, IP, and geospace phenomena exist. After presenting illustrative examples of coronal holes and CMEs, I discuss the internal structure of ICMEs, in particular the magnetic clouds (MCs). I then discuss how the magnetic field and speed correlate in the sheath and cloud portions of ICMEs. CME speed measured near the Sun also has significant correlations with the speed and magnetic field strengths measured at 1 AU. The dependence of storm intensity on MC, sheath, and CME properties is discussed pointing to the close connection between solar and IP phenomena. I compare the delay time between MC arrival at I AU and the peak time of storms for the cloud and sheath portions and show that the internal structure of MCs leads to the variations in the observed delay times. Finally, we examine the variation of solar-source latitudes of IP structures as a function of the solar cycle and find that they have to be very close to the disk center. Published by Elsevier Ltd.
引用
收藏
页码:2078 / 2100
页数:23
相关论文
共 89 条
[1]  
AKASOFU SI, 1981, SPACE SCI REV, V28, P121, DOI 10.1007/BF00218810
[2]  
[Anonymous], 1995, INTERPLANETARY MAGNE
[3]   LARGE-AMPLITUDE ALFVEN WAVES IN INTERPLANETARY MEDIUM .2. [J].
BELCHER, JW ;
DAVIS, L .
JOURNAL OF GEOPHYSICAL RESEARCH, 1971, 76 (16) :3534-+
[4]   Differences between CME-driven storms and CIR-driven storms [J].
Borovsky, Joseph E. ;
Denton, Michael H. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2006, 111 (A7)
[5]   ERUPTIVE PROMINENCES AS SOURCES OF MAGNETIC CLOUDS IN THE SOLAR-WIND [J].
BOTHMER, V ;
SCHWENN, R .
SPACE SCIENCE REVIEWS, 1994, 70 (1-2) :215-220
[6]   The large angle spectroscopic coronagraph (LASCO) [J].
Brueckner, GE ;
Howard, RA ;
Koomen, MJ ;
Korendyke, CM ;
Michels, DJ ;
Moses, JD ;
Socker, DG ;
Dere, KP ;
Lamy, PL ;
Llebaria, A ;
Bout, MV ;
Schwenn, R ;
Simnett, GM ;
Bedford, DK ;
Eyles, CJ .
SOLAR PHYSICS, 1995, 162 (1-2) :357-402
[7]   CAUSES OF RECURRENT GEOMAGNETIC STORMS [J].
BURLAGA, LF ;
LEPPING, RP .
PLANETARY AND SPACE SCIENCE, 1977, 25 (12) :1151-1160
[8]   Fast ejecta during the ascending phase of solar cycle 23: ACE observations, 1998-1999 [J].
Burlaga, LF ;
Skoug, RM ;
Smith, CW ;
Webb, DF ;
Zurbuchen, TH ;
Reinard, A .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2001, 106 (A10) :20957-20977
[9]   A MAGNETIC CLOUD AND A CORONAL MASS EJECTION [J].
BURLAGA, LF ;
KLEIN, L ;
SHEELEY, NR ;
MICHELS, DJ ;
HOWARD, RA ;
KOOMEN, MJ ;
SCHWENN, R ;
ROSENBAUER, H .
GEOPHYSICAL RESEARCH LETTERS, 1982, 9 (12) :1317-1320
[10]  
CHAPMAN S, 1962, GEOMAGN AERON, V2, P541