TURN TAP: Temporal Unit Regression Network for Temporal Action Proposals

被引:369
作者
Gao, Jiyang [1 ]
Yang, Zhenheng [1 ]
Sun, Chen [2 ]
Chen, Kan [1 ]
Nevatia, Ram [1 ]
机构
[1] Univ Southern Calif, Los Angeles, CA 90089 USA
[2] Google Res, Mountain View, CA USA
来源
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV) | 2017年
关键词
D O I
10.1109/ICCV.2017.392
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Temporal Action Proposal (TAP) generation is an important problem, as fast and accurate extraction of semantically important (e.g. human actions) segments from untrimmed videos is an important step for large-scale video analysis. We propose a novel Temporal Unit Regression Network (TURN) model. There are two salient aspects of TURN: (1) TURN jointly predicts action proposals and refines the temporal boundaries by temporal coordinate regression; (2) Fast computation is enabled by unit feature reuse: a long untrimmed video is decomposed into video units, which are reused as basic building blocks of temporal proposals. TURN outperforms the previous state-of-the-art methods under average recall (AR) by a large margin on THUMOS-14 and ActivityNet datasets, and runs at over 880 frames per second (FPS) on a TITAN X GPU. We further apply TURN as a proposal generation stage for existing temporal action localization pipelines, it outperforms state-of-the-art performance on THUMOS-14 and ActivityNet.
引用
收藏
页码:3648 / 3656
页数:9
相关论文
共 36 条
[1]  
ABADI M, 2015, TENSORFLOW LARGE SCA, DOI DOI 10.48550/ARXIV.1605.08695
[2]  
[Anonymous], 2016, ECCV
[3]  
[Anonymous], 2014, EUR C COMP VIS ECCV
[4]  
Heilbron FC, 2015, PROC CVPR IEEE, P961, DOI 10.1109/CVPR.2015.7298698
[5]  
Courtney PG, 2015, IEEE COMP SEMICON
[6]   DAPs: Deep Action Proposals for Action Understanding [J].
Escorcia, Victor ;
Heilbron, Fabian Caba ;
Niebles, Juan Carlos ;
Ghanem, Bernard .
COMPUTER VISION - ECCV 2016, PT III, 2016, 9907 :768-784
[7]   Two-frame motion estimation based on polynomial expansion [J].
Farnebäck, G .
IMAGE ANALYSIS, PROCEEDINGS, 2003, 2749 :363-370
[8]  
Gan C, 2015, PROC CVPR IEEE, P2568, DOI 10.1109/CVPR.2015.7298872
[9]  
Girshick, 2015, P IEEE INT C COMP VI, DOI [10.1109/ICCV.2015.169, DOI 10.1109/ICCV.2015.169]
[10]  
Girshick R., 2014, IEEE C COMP VIS PATT, DOI [DOI 10.1109/CVPR.2014.81, 10.1109/CVPR.2014.81]