Fibronectin Functionalized Electrospun Fibers by Using Benign Solvents: Best Way to Achieve Effective Functionalization

被引:48
作者
Liverani, Liliana [1 ]
Killian, Manuela S. [2 ]
Boccaccini, Aldo R. [1 ]
机构
[1] Univ Erlangen Nurnberg, Inst Biomat, Dept Mat Sci & Engn, Erlangen, Germany
[2] Univ Erlangen Nurnberg, Dept Mat Sci & Engn, Chair Surface Sci & Corros, Erlangen, Germany
关键词
electrospinning; benign solvents; nanofibers; fibronectin; functionalization; scaffolds; tissue engineering; NANOFIBERS; SCAFFOLDS; DIFFERENTIATION; EXPRESSION; MEDICINE; COLLAGEN; DESIGN; CELLS; ST2;
D O I
10.3389/fbioe.2019.00068
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The aim of this study is to demonstrate the feasibility of different functionalization methods for electrospun fibers developed using benign solvents. In particular three different approaches were investigated to achieve the functionalization of poly(epsilon caprolactone) (PCL) electrospun fibers with fibronectin. Protein surface entrapment, chemical functionalization and coaxial electrospinning were performed and compared. Moreover, bilayered scaffolds, with a top patterned and functionalized layer with fibronectin and a randomly oriented not functionalized layer were fabricated, demonstrating the versatility of the use of benign solvents for electrospinning also for the fabrication of complex graded structures. Besides the characterization of the morphology of the obtained scaffolds, ATR-FTIR and ToF-SIMS were used for the surface characterization of the functionalized fibers. Cell adhesion and proliferation were also investigated by using ST-2 cells. Positive results were obtained from all functionalized scaffolds and the most promising results were obtained with bilayered scaffolds, in terms of cells infiltration inside the fibrous structure.
引用
收藏
页数:12
相关论文
共 43 条
[1]  
Boccaccini A. R., 2017, ELECTROSPUN BIOMATER, P149, DOI [10.1007/978-3-319-70049-6_5, DOI 10.1007/978-3-319-70049-6_5]
[2]   Electrospinning for regenerative medicine: a review of the main topics [J].
Braghirolli, Daikelly I. ;
Steffens, Daniela ;
Pranke, Patricia .
DRUG DISCOVERY TODAY, 2014, 19 (06) :743-753
[3]   Surface Entrapment of Fibronectin on Electrospun PLGA Scaffolds for Periodontal Tissue Engineering [J].
Campos, Doris M. ;
Gritsch, Kerstin ;
Salles, Vincent ;
Attik, Ghania N. ;
Grosgogeat, Brigitte .
BIORESEARCH OPEN ACCESS, 2014, 3 (03) :117-126
[4]   An electrospun triphasic nanofibrous scaffold for bone tissue engineering [J].
Catledge, S. A. ;
Clem, W. C. ;
Shrikishen, N. ;
Chowdhury, S. ;
Stanishevsky, A. V. ;
Koopman, M. ;
Vohra, Y. K. .
BIOMEDICAL MATERIALS, 2007, 2 (02) :142-150
[5]   Electrospinning of type I collagen and PCL nanofibers using acetic acid [J].
Chakrapani, V. Yogeshwar ;
Gnanamani, A. ;
Giridev, V. R. ;
Madhusoothanan, M. ;
Sekaran, G. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2012, 125 (04) :3221-3227
[6]   Hybrid biomimetic electrospun fibrous mats derived from poly(ε-caprolactone) and silk fibroin protein for wound dressing application [J].
Chutipakdeevong, Jesada ;
Ruktanonchai, Uracha ;
Supaphol, Pitt .
JOURNAL OF APPLIED POLYMER SCIENCE, 2015, 132 (11)
[7]   Mechanical testing of electrospun PCL fibers [J].
Croisier, F. ;
Duwez, A. -S. ;
Jerome, C. ;
Leonard, A. F. ;
van der Werf, K. O. ;
Dijkstra, P. J. ;
Bennink, M. L. .
ACTA BIOMATERIALIA, 2012, 8 (01) :218-224
[8]   Insulin-dependent adipogenesis in stromal ST2 cells derived from murine bone marrow [J].
Ding, J ;
Nagai, K ;
Woo, JT .
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2003, 67 (02) :314-321
[9]   Identifying key processing parameters for the electrospinning of aligned polymer nanofibers [J].
Doergens, Anna ;
Roether, Judith A. ;
Dippold, Dirk ;
Boccaccini, Aldo R. ;
Schubert, Dirk W. .
MATERIALS LETTERS, 2015, 140 :99-102
[10]   Anisotropic poly (glycerol sebacate)-poly (ε-caprolactone) electrospun fibers promote endothelial cell guidance [J].
Gaharwar, Akhilesh K. ;
Nikkhah, Mehdi ;
Sant, Shilpa ;
Khademhosseini, Ali .
BIOFABRICATION, 2015, 7 (01)