Algebraic representation for fractional Fourier transform on one-dimensional discrete signal models

被引:5
作者
Zhang, Zhi-Chao [1 ]
机构
[1] Sichuan Univ, Coll Math, Chengdu 610065, Sichuan, Peoples R China
关键词
signal processing; algebra; Fourier transforms; algebraic representation; algebraic signal processing; fractional Fourier transform; one-dimensional discrete signal models; FRFT; finite discrete-time signal models; infinite discrete-time signal models; time-frequency signal processing; LINEAR CANONICAL TRANSFORM; UNCERTAINTY PRINCIPLES; POLYNOMIAL-TRANSFORMS; PROCESSING THEORY; SAMPLING THEOREM; PHASE RETRIEVAL; DOMAINS; CONVOLUTION; ENCRYPTION; PRODUCT;
D O I
10.1049/iet-spr.2017.0217
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Algebraic signal processing provides a general framework for studying theoretical problems (sampling, transform domain analysis etc.) in the classical signal processing. In this study, the<?show [AQ ID=Q1]?> authors extend algebraic representation for the conventional Fourier transform (FT) to the fractional FT (FRFT) domain, from which the algebraic structures for the FRFT on infinite and finite one-dimensional signal models are obtained. They show that FRFTs on the infinite and finite discrete-time (DT) signal models, respectively, are none other than the DTFRFT and the closed-form discrete FRFT. They also derive FRFTs on the infinite and finite discrete-nearest neighbour signal models, and finally they discuss their applications in optical and time-frequency signal processing.
引用
收藏
页码:143 / 148
页数:6
相关论文
共 44 条
  • [1] THE FRACTIONAL FOURIER-TRANSFORM IN OPTICAL PROPAGATION PROBLEMS
    ALIEVA, T
    LOPEZ, V
    AGULLOLOPEZ, F
    ALMEIDA, LB
    [J]. JOURNAL OF MODERN OPTICS, 1994, 41 (05) : 1037 - 1044
  • [2] The discrete fractional Fourier transformation
    Arikan, O
    Kutay, MA
    Ozaktas, HM
    Akdemir, OK
    [J]. PROCEEDINGS OF THE IEEE-SP INTERNATIONAL SYMPOSIUM ON TIME-FREQUENCY AND TIME-SCALE ANALYSIS, 1996, : 205 - 207
  • [3] Separation of Overlapping Linear Frequency Modulated (LFM) Signals Using the Fractional Fourier Transform
    Cowell, David M. J.
    Freear, Steven
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2010, 57 (10) : 2324 - 2333
  • [4] Fast discrete polynomial transforms with applications to data analysis for distance transitive graphs
    Driscoll, JR
    Healy, DM
    Rockmore, DN
    [J]. SIAM JOURNAL ON COMPUTING, 1997, 26 (04) : 1066 - 1099
  • [5] Unified fractional Fourier transform and sampling theorem
    Erseghe, T
    Kraniauskas, P
    Cariolaro, G
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (12) : 3419 - 3423
  • [6] Precision influence of a phase retrieval algorithm in fractional Fourier domains from position measurement error
    Guo, Cheng
    Tan, Jiubin
    Liu, Zhengjun
    [J]. APPLIED OPTICS, 2015, 54 (22) : 6940 - 6947
  • [7] Fiber Impairment Compensation Using Coherent Detection and Digital Signal Processing
    Ip, Ezra M.
    Kahn, Joseph M.
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2010, 28 (04) : 502 - 519
  • [8] Phase retrieval for attacking fractional Fourier transform encryption
    Kong, Dezhao
    Shen, Xueju
    Cao, Liangcai
    Jin, Guofan
    [J]. APPLIED OPTICS, 2017, 56 (12) : 3449 - 3456
  • [9] Method for defining a class of fractional operations
    Kraniauskas, P
    Cariolaro, G
    Erseghe, T
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (10) : 2804 - 2807
  • [10] Optical image encryption based on compressive sensing and chaos in the fractional Fourier domain
    Liu, Xingbin
    Mei, Wenbo
    Du, Huiqian
    [J]. JOURNAL OF MODERN OPTICS, 2014, 61 (19) : 1570 - 1577