Stability Diagram of Janus and Core-Shell Configurations in Bimetallic Nanowires

被引:8
|
作者
Maras, Emile [1 ,2 ]
Berthier, Fabienne [1 ,3 ]
Legrand, Bernard [4 ]
机构
[1] Univ Paris Saclay, Univ Paris 11, ICMMO, UMR 8182,SP2M, F-91405 Orsay, France
[2] Aalto Univ, Sch Sci, Dept Appl Phys, COMP Ctr Excellence, FI-00076 Espoo, Finland
[3] CNRS, UMR 8182, F-91405 Orsay, France
[4] Univ Paris Saclay, Serv Rech Met Phys, DEN, CEA, F-91191 Gif Sur Yvette, France
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2016年 / 120卷 / 39期
关键词
ALLOY NANOPARTICLES; STRUCTURAL-PROPERTIES; SEGREGATION PROFILES; CHEMICAL-ORDER; PHASE-DIAGRAMS; NANOALLOYS; TRANSITION; SURFACE; SIZE;
D O I
10.1021/acs.jpcc.6b06707
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Alloy nanoparticles can exhibit several different structures due to segregation and phase separation. In the case of an alloy with a tendency to phase separate, the core-shell (CS) configuration and the so-called "Janus" one are the most commonly observed configurations. For a given alloy, the relative stability of these configurations depends on the size of the particle, the temperature, and the chemical composition. Using canonical Monte Carlo simulation on a rigid lattice, we study the stability diagram of bimetallic nanowires and its evolution as a function of the length of nanowires. We consider successively alloys with a weak and strong superficial segregation tendency. The simplicity of this 1D system allows us to extract the pertinent energetic parameters that control the relative stabilities. Furthermore, we find that the critical temperature decreases when increasing the size of the system. Phase diagrams and stability diagrams are compared and discussed in terms of the behavior of an assembly in mutual equilibrium with each other or of an assembly of isolated nanoparticles.
引用
收藏
页码:22670 / 22680
页数:11
相关论文
共 50 条
  • [21] Design principles of bimetallic core-shell catalysts
    Vlachos, Dionisios
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [22] Structure and Thermal Stability of ZnO-TiO2 Core-Shell Nanowires
    Sun Menglong
    Wang Hongbo
    Nie Xianglong
    Ma Dayan
    Ma Pei
    Xu Kewei
    RARE METAL MATERIALS AND ENGINEERING, 2015, 44 (12) : 3073 - 3077
  • [23] Thermally stimulated structural evolution of bimetallic nanoplatelets - Changing from core-shell to alloyed to Janus nanoplatelets
    Xie, Xiaobin
    van Blaaderen, Alfons
    van Huis, Marijn A.
    MATERIALS TODAY NANO, 2024, 25
  • [24] Competition of core-shell and Janus morphology in bimetallic nanoparticles: Insights from a phase-field model
    Pankaj, P.
    Bhattacharyya, Saswata
    Chatterjee, Subhradeep
    ACTA MATERIALIA, 2022, 233
  • [25] Ni-Co bimetallic nanoparticles with core-shell, alloyed, and Janus structures explored by MD simulation
    Akbarzadeh, Hamed
    Mehrjouei, Esmat
    Ramezanzadeh, Samira
    Izanloo, Cobra
    JOURNAL OF MOLECULAR LIQUIDS, 2017, 248 : 1078 - 1095
  • [26] Core-shell-structured bimetallic clusters and nanowires
    Cheng, Daojian
    Wang, Wenchuan
    Huang, Shiping
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (35)
  • [27] Core-Shell Nanowires for Efficient Photovoltaic Devices
    不详
    CHEMPHYSCHEM, 2011, 12 (13) : 2373 - 2373
  • [28] Polytypism in GaAs/GaNAs core-shell nanowires
    Yukimune, M.
    Fujiwara, R.
    Mita, T.
    Ishikawa, F.
    NANOTECHNOLOGY, 2020, 31 (50)
  • [29] Electrochemical synthesis of core-shell magnetic nanowires
    Ovejero, Jesus G.
    Bran, Cristina
    Morales, Maria P.
    Vazquez, Manuel
    Vilanova, Enrique
    Kosel, Juergen
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2015, 389 : 144 - 147
  • [30] Anisotropic In distribution in InGaN core-shell nanowires
    Leclere, C.
    Katcho, N. A.
    Tourbot, G.
    Daudin, B.
    Proietti, M. G.
    Renevier, H.
    JOURNAL OF APPLIED PHYSICS, 2014, 116 (01)