Modeling NE213 scintillator response to neutrons using an MCNPX-PHOTRACK hybrid code

被引:26
作者
Tajik, M. [1 ,2 ]
Ghal-Eh, N. [2 ]
Etaati, G. R. [3 ]
Afarideh, H. [3 ]
机构
[1] NSTRI, Nucl Sci Res Sch, Tehran, Iran
[2] Damghan Univ, Sch Phys, Damghan, Iran
[3] Amirkabir Univ Technol, Dept Nucl Engn & Phys, Tehran, Iran
关键词
Scintillator; Neutron; Response function; MCNPX; PHOTRACK; SIMULATION; SPECTROMETRY; DETECTORS;
D O I
10.1016/j.nima.2012.12.001
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This paper reports on how to generate the response function of an NE213 scintillator when exposed to mono-energetic neutrons using the PTRAC card of the MCNPX code. The light transport part of the simulation has been undertaken with the Monte Carlo PHOTRACK code. The comparison confirms that the simulated response function represents a promising agreement with the previously published simulations and experiments. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:104 / 110
页数:7
相关论文
共 29 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]  
[Anonymous], 2008, GEANT 4 9 2 REL NOT
[3]   Calculation of neutron response functions in complex geometries with the MCNP code [J].
Bahr, C ;
Bottger, R ;
Klein, H ;
von Neumann-Cosel, P ;
Richter, A ;
Schmidt, D ;
Schweda, K ;
Strauch, S .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1998, 411 (2-3) :430-436
[4]   MEASUREMENT OF TIME DEPENDENCE OF SCINTILLATION INTENSITY BY A DELAYED-COINCIDENCE METHOD [J].
BOLLINGER, L ;
THOMAS, GE .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1961, 32 (09) :1044-+
[5]   IMPROVED PREDICTIONS OF NEUTRON DETECTION EFFICIENCY FOR HYDROCARBON SCINTILLATORS FROM 1 MEV TO ABOUT 300 MEV [J].
CECIL, RA ;
ANDERSON, BD ;
MADEY, R .
NUCLEAR INSTRUMENTS & METHODS, 1979, 161 (03) :439-447
[6]  
Dickens J. K., 1988, 6462 ORNL
[7]  
Dickens J.K., 1988, ORNL6463
[8]  
Dietze G., 1983, NRESP4 and NEFF4. Monte Carlo codes for the calculation of neutron response functions and detection efficiencies for NE 213 scintillation detectors
[9]   Light transport feature for SCINFUL [J].
Etaati, G. R. ;
Ghal-Eh, N. .
APPLIED RADIATION AND ISOTOPES, 2008, 66 (03) :395-400
[10]   On the necessity of light transport simulation in scintillators [J].
Ghal-Eh, N. ;
Etaati, G. R. .
JOURNAL OF LUMINESCENCE, 2009, 129 (01) :95-99