Using domain knowledge for robust and generalizable deep learning-based CT-free PET attenuation and scatter correction

被引:42
作者
Guo, Rui [1 ,2 ]
Xue, Song [3 ]
Hu, Jiaxi [3 ]
Sari, Hasan [3 ,4 ]
Mingels, Clemens [3 ]
Zeimpekis, Konstantinos [3 ]
Prenosil, George [3 ]
Wang, Yue [1 ,2 ]
Zhang, Yu [1 ,2 ]
Viscione, Marco [3 ]
Sznitman, Raphael [5 ,6 ]
Rominger, Axel [3 ]
Li, Biao [1 ,2 ]
Shi, Kuangyu [3 ,6 ,7 ]
机构
[1] Shanghai Jiao Tong Univ, Ruijin Hosp, Dept Nucl Med, Sch Med, Shanghai, Peoples R China
[2] Ruijin Ctr, Collaborat Innovat Ctr Mol Imaging Precis Med, Shanghai, Peoples R China
[3] Univ Bern, Dept Nucl Med, Inselspital, Bern Univ Hosp, Bern, Switzerland
[4] Siemens Healthcare AG, Adv Clin Imaging Technol, Lausanne, Switzerland
[5] Univ Bern, ARTORG Ctr, Bern, Switzerland
[6] Univ Bern, Ctr Artificial Intelligence Med CAIM, Bern, Switzerland
[7] Tech Univ Munich, Comp Aided Med Procedures & Augmented Real, Inst Informat I16, Munich, Germany
基金
中国国家自然科学基金; 瑞士国家科学基金会;
关键词
TIME-OF-FLIGHT; SIMULTANEOUS RECONSTRUCTION; RADIOMICS ANALYSIS; EMISSION; METASTASIS; IMAGES;
D O I
10.1038/s41467-022-33562-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite the potential of deep learning (DL)-based methods in substituting CT-based PET attenuation and scatter correction for CT-free PET imaging, a critical bottleneck is their limited capability in handling large heterogeneity of tracers and scanners of PET imaging. This study employs a simple way to integrate domain knowledge in DL for CT-free PET imaging. In contrast to conventional direct DL methods, we simplify the complex problem by a domain decomposition so that the learning of anatomy-dependent attenuation correction can be achieved robustly in a low-frequency domain while the original anatomy-independent high-frequency texture can be preserved during the processing. Even with the training from one tracer on one scanner, the effectiveness and robustness of our proposed approach are confirmed in tests of various external imaging tracers on different scanners. The robust, generalizable, and transparent DL development may enhance the potential of clinical translation. Deep learning-based methods have been proposed to substitute CT-based PET attenuation and scatter correction to achieve CT-free PET imaging. Here, the authors present a simple way to integrate domain knowledge in deep learning for CT-free PET imaging.
引用
收藏
页数:9
相关论文
共 59 条
[41]   Simultaneous Reconstruction of Activity and Attenuation for PET/MR [J].
Salomon, Andre ;
Goedicke, Andreas ;
Schweizer, Bernd ;
Aach, Til ;
Schulz, Volkmar .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (03) :804-813
[42]  
Sari H., 2021, J NUCL MED
[43]   Deep-JASC: joint attenuation and scatter correction in whole-body 18F-FDG PET using a deep residual network [J].
Shiri, Isaac ;
Arabi, Hossein ;
Geramifar, Parham ;
Hajianfar, Ghasem ;
Ghafarian, Pardis ;
Rahmim, Arman ;
Ay, Mohammad Reza ;
Zaidi, Habib .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2020, 47 (11) :2533-2548
[44]   Direct attenuation correction of brain PET images using only emission data via a deep convolutional encoder-decoder (Deep-DAC) [J].
Shiri, Isaac ;
Ghafarian, Pardis ;
Geramifar, Parham ;
Leung, Kevin Ho-Yin ;
Ghelichoghli, Mostafa ;
Oveisi, Mehrdad ;
Rahmim, Arman ;
Ay, Mohammad Reza .
EUROPEAN RADIOLOGY, 2019, 29 (12) :6867-6879
[45]   Supraclavicular and Axillary Lymphadenopathy Induced by COVID-19 Vaccination on 18F-Fluorthanatrace, 68Ga-DOTATATE, and 18F-Fluciclovine PET/CT [J].
Surasi, Devaki Shilpa Sudha ;
Lin, Lilie ;
Ravizzini, Gregory ;
Wong, Franklin .
CLINICAL NUCLEAR MEDICINE, 2022, 47 (02) :195-196
[46]  
Teimoorisichani M, 2021, J NUCL MED, V62
[47]   High-performance medicine: the convergence of human and artificial intelligence [J].
Topol, Eric J. .
NATURE MEDICINE, 2019, 25 (01) :44-56
[48]   Dixon-VIBE Deep Learning (DIVIDE) Pseudo-CT Synthesis for Pelvis PET/MR Attenuation Correction [J].
Torrado-Carvajal, Angel ;
Vera-Olmos, Javier ;
Izquierdo-Garcia, David ;
Catalano, Onofrio A. ;
Morales, Manuel A. ;
Margolin, Justin ;
Soricelli, Andrea ;
Salvatore, Marco ;
Malpica, Norberto ;
Catana, Ciprian .
JOURNAL OF NUCLEAR MEDICINE, 2019, 60 (03) :429-435
[49]   New Radionuclides and Technological Advances in SPECT and PET Scanners [J].
van der Meulen, Nicholas P. ;
Strobel, Klaus ;
Lima, Thiago Viana Miranda .
CANCERS, 2021, 13 (24)
[50]   Toward Prediction of Efficacy of Chemotherapy: A Proof of Concept Study in Lung Cancer Patients Using [11C]docetaxel and Positron Emission Tomography [J].
van der Veldt, Astrid A. M. ;
Lubberink, Mark ;
Mathijssen, Ron H. J. ;
Loos, Walter J. ;
Herder, Gerarda J. M. ;
Greuter, Henri N. ;
Comans, Emile F. I. ;
Rutten, Hugo B. ;
Eriksson, Jonas ;
Windhorst, Albert D. ;
Hendrikse, N. Harry ;
Postmus, Pieter E. ;
Smit, Egbert F. ;
Lammertsma, Adriaan A. .
CLINICAL CANCER RESEARCH, 2013, 19 (15) :4163-4173