Using domain knowledge for robust and generalizable deep learning-based CT-free PET attenuation and scatter correction

被引:42
作者
Guo, Rui [1 ,2 ]
Xue, Song [3 ]
Hu, Jiaxi [3 ]
Sari, Hasan [3 ,4 ]
Mingels, Clemens [3 ]
Zeimpekis, Konstantinos [3 ]
Prenosil, George [3 ]
Wang, Yue [1 ,2 ]
Zhang, Yu [1 ,2 ]
Viscione, Marco [3 ]
Sznitman, Raphael [5 ,6 ]
Rominger, Axel [3 ]
Li, Biao [1 ,2 ]
Shi, Kuangyu [3 ,6 ,7 ]
机构
[1] Shanghai Jiao Tong Univ, Ruijin Hosp, Dept Nucl Med, Sch Med, Shanghai, Peoples R China
[2] Ruijin Ctr, Collaborat Innovat Ctr Mol Imaging Precis Med, Shanghai, Peoples R China
[3] Univ Bern, Dept Nucl Med, Inselspital, Bern Univ Hosp, Bern, Switzerland
[4] Siemens Healthcare AG, Adv Clin Imaging Technol, Lausanne, Switzerland
[5] Univ Bern, ARTORG Ctr, Bern, Switzerland
[6] Univ Bern, Ctr Artificial Intelligence Med CAIM, Bern, Switzerland
[7] Tech Univ Munich, Comp Aided Med Procedures & Augmented Real, Inst Informat I16, Munich, Germany
基金
中国国家自然科学基金; 瑞士国家科学基金会;
关键词
TIME-OF-FLIGHT; SIMULTANEOUS RECONSTRUCTION; RADIOMICS ANALYSIS; EMISSION; METASTASIS; IMAGES;
D O I
10.1038/s41467-022-33562-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite the potential of deep learning (DL)-based methods in substituting CT-based PET attenuation and scatter correction for CT-free PET imaging, a critical bottleneck is their limited capability in handling large heterogeneity of tracers and scanners of PET imaging. This study employs a simple way to integrate domain knowledge in DL for CT-free PET imaging. In contrast to conventional direct DL methods, we simplify the complex problem by a domain decomposition so that the learning of anatomy-dependent attenuation correction can be achieved robustly in a low-frequency domain while the original anatomy-independent high-frequency texture can be preserved during the processing. Even with the training from one tracer on one scanner, the effectiveness and robustness of our proposed approach are confirmed in tests of various external imaging tracers on different scanners. The robust, generalizable, and transparent DL development may enhance the potential of clinical translation. Deep learning-based methods have been proposed to substitute CT-based PET attenuation and scatter correction to achieve CT-free PET imaging. Here, the authors present a simple way to integrate domain knowledge in deep learning for CT-free PET imaging.
引用
收藏
页数:9
相关论文
共 59 条
[21]   High metabolic tumor volume and total lesion glycolysis are associated with lateral lymph node metastasis in patients with incidentally detected thyroid carcinoma [J].
Kim, Bo Hyun ;
Kim, Seong-Jang ;
Kim, Keunyoung ;
Kim, Heeyoung ;
Kim, So Jung ;
Kim, Won Jin ;
Jeon, Yun Kyung ;
Kim, Sang Soo ;
Kim, Yong Ki ;
Kim, In Joo .
ANNALS OF NUCLEAR MEDICINE, 2015, 29 (08) :721-729
[22]   18F-FDG-PET-based Radiomics signature predicts MGMT promoter methylation status in primary diffuse glioma [J].
Kong, Ziren ;
Lin, Yusong ;
Jiang, Chendan ;
Li, Longfei ;
Liu, Zehua ;
Wang, Yuekun ;
Dai, Congxin ;
Liu, Delin ;
Qin, Xuying ;
Wang, Yu ;
Liu, Zhenyu ;
Cheng, Xin ;
Tian, Jie ;
Ma, Wenbin .
CANCER IMAGING, 2019, 19 (01)
[23]   A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients [J].
Ladefoged, Claes N. ;
Law, Ian ;
Anazodo, Udunna ;
St Lawrence, Keith ;
Izquierdo-Garcia, David ;
Catana, Ciprian ;
Burgos, Ninon ;
Cardoso, M. Jorge ;
Ourselin, Sebastien ;
Hutton, Brian ;
Merida, Ines ;
Costes, Nicolas ;
Hammers, Alexander ;
Benoit, Didier ;
Holm, Soren ;
Juttukonda, Meher ;
An, Hongyu ;
Cabello, Jorge ;
Lukas, Mathias ;
Nekolla, Stephan ;
Ziegler, Sibylle ;
Fenchel, Matthias ;
Jakoby, Bjoern ;
Casey, Michael E. ;
Benzinger, Tammie ;
Hojgaard, Liselotte ;
Hansen, Adam E. ;
Andersen, Flemming L. .
NEUROIMAGE, 2017, 147 :346-359
[24]  
Lau WL, 2020, AM J NUCL MED MOLEC, V10, P95
[25]   A Review of Deep-Learning-Based Approaches for Attenuation Correction in Positron Emission Tomography [J].
Lee, Jae Sung .
IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2021, 5 (02) :160-184
[26]   Zero-Echo-Time and Dixon Deep Pseudo-CT (ZeDD CT): Direct Generation of Pseudo-CT Images for Pelvic PET/MRI Attenuation Correction Using Deep Convolutional Neural Networks with Multiparametric MRI [J].
Leynes, Andrew P. ;
Yang, Jaewon ;
Wiesinger, Florian ;
Kaushik, Sandeep S. ;
Shanbhag, Dattesh D. ;
Seo, Youngho ;
Hope, Thomas A. ;
Larson, Peder E. Z. .
JOURNAL OF NUCLEAR MEDICINE, 2018, 59 (05) :852-858
[27]   A Non-invasive Radiomic Method Using 18F-FDG PET Predicts Isocitrate Dehydrogenase Genotype and Prognosis in Patients With Glioma [J].
Li, Longfei ;
Mu, Wei ;
Wang, Yaning ;
Liu, Zhenyu ;
Liu, Zehua ;
Wang, Yu ;
Ma, Wenbin ;
Kong, Ziren ;
Wang, Shuo ;
Zhou, Xuezhi ;
Wei, Wei ;
Cheng, Xin ;
Lin, Yusong ;
Tian, Jie .
FRONTIERS IN ONCOLOGY, 2019, 9
[28]   Modified kernel MLAA using autoencoder for PET-enabled dual-energy CT [J].
Li, Siqi ;
Wang, Guobao .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2204)
[29]   Ultra-low-activity total-body dynamic PET imaging allows equal performance to full-activity PET imaging for investigating kinetic metrics of 18F-FDG in healthy volunteers [J].
Liu, Guobing ;
Hu, Pengcheng ;
Yu, Haojun ;
Tan, Hui ;
Zhang, Yiqiu ;
Yin, Hongyan ;
Hu, Yan ;
Gu, Jianying ;
Shi, Hongcheng .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (08) :2373-2383
[30]   Combined FET PET/MRI radiomics differentiates radiation injury from recurrent brain metastasis [J].
Lohmann, Philipp ;
Kocher, Martin ;
Ceccon, Garry ;
Bauer, Elena K. ;
Stoffels, Gabriele ;
Viswanathan, Shivakumar ;
Ruge, Maximilian I. ;
Neumaier, Bernd ;
Shah, Nadim J. ;
Fink, Gereon R. ;
Langen, Karl-Josef ;
Galldiks, Norbert .
NEUROIMAGE-CLINICAL, 2018, 20 :537-542