Solution of boundary value problems for the fractional diffusion equation by the green function method

被引:38
作者
Pskhu, AV [1 ]
机构
[1] Russian Acad Sci, Kabardino Balkar Sci Ctr, Res Inst Appl Math & Automat, Nalchik, Russia
关键词
Differential Equation; Partial Differential Equation; Ordinary Differential Equation; Functional Equation; Green Function;
D O I
10.1023/B:DIEQ.0000017925.68789.e9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:1509 / 1513
页数:5
相关论文
共 13 条
[1]  
Gekkieva S.K., 2000, REP ADYG INTER ACAD, V5, P16
[2]  
Gekkieva S. Kh., 1994, DOKLADY ADYGSKOI MEZ, V1, P17
[3]  
Kochubej A.N., 1990, Differ. Uravn, V26, P660
[4]  
Lavrent'ev M.A., 2002, Methods of the Theory of Functions of a Complex Variable
[5]  
Nakhushev A.M., 2000, ELEMENTY DROBNOGO IS
[6]  
NAKHUSHEV AM, 2000, DIFFERENTSIALNYKH UR
[7]  
NAKHUSHEVA VA, 1998, THESIS NALCHIK
[8]  
Nakhusheva Z.A., 1997, DOKL ADYGSKOI CHERKE, V2, P36
[9]   Solution of a boundary value problem for a fractional partial differential equation [J].
Pskhu, AV .
DIFFERENTIAL EQUATIONS, 2003, 39 (08) :1150-1158
[10]   Solution of the first boundary value problem for a fractional-order diffusion equation [J].
Pskhu, AV .
DIFFERENTIAL EQUATIONS, 2003, 39 (09) :1359-1363