Computer-assisted skin cancer diagnosis Is it time for artificial intelligence in clinical practice?

被引:4
作者
Brinker, T. J. [1 ]
Schlager, G. [2 ]
French, L. E. [2 ]
Jutzi, T. [1 ]
Kittler, H. [3 ]
机构
[1] Deutsch Krebsforschungszentrum DKFZ, Nachwuchsgrp Digitale Biomarker Onkol DBO, Heidelberg, Germany
[2] LMU Munchen, Univ Klinikum, Abt Dermatol & Allergol, Munich, Germany
[3] Med Univ Wien, Abt Dermatol, Vienna, Austria
来源
HAUTARZT | 2020年 / 71卷 / 09期
关键词
Machine learning; Dermoscopy; Computer-assisted diagnosis; Suspicious lesions; Computer algorithms; CONVOLUTIONAL NEURAL-NETWORK; IMAGE CLASSIFICATION; DERMATOLOGISTS; PERFORMANCE; SUPERIOR;
D O I
10.1007/s00105-020-04662-8
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Background Artificial intelligence (AI) is increasingly being used in medical practice. Especially in the image-based diagnosis of skin cancer, AI shows great potential. However, there is a significant discrepancy between expectations and true relevance of AI in current dermatological practice. Objectives This article summarizes promising study results of skin cancer diagnosis by computer-based diagnostic systems and discusses their significance for daily practice. We hereby focus on the analysis of dermoscopic images of pigmented and unpigmented skin lesions. Materials and methods A selective literature search for recent relevant trials was conducted. The included studies used machine learning, and in particular "convolutional neural networks", which have been shown to be particularly effective for the classification of image data. Results and conclusions In numerous studies, computer algorithms were able to detect pigmented and nonpigmented neoplasms of the skin with high precision, comparable to that of dermatologists. The combination of the physician's assessment and AI showed the best results. Computer-based diagnostic systems are widely accepted among patients and physicians. However, they are still not applicable in daily practice, since computer-based diagnostic systems have only been tested in an experimental environment. In addition, many digital diagnostic criteria that help AI to classify skin lesions remain unclear. This lack of transparency still needs to be addressed. Moreover, clinical studies on the use of AI-based assistance systems are needed in order to prove its applicability in daily dermatologic practice.
引用
收藏
页码:669 / 676
页数:8
相关论文
共 23 条
[1]  
[Anonymous], 2019, KREBS
[2]   Medical Image Analysis using Convolutional Neural Networks: A Review [J].
Anwar, Syed Muhammad ;
Majid, Muhammad ;
Qayyum, Adnan ;
Awais, Muhammad ;
Alnowami, Majdi ;
Khan, Muhammad Khurram .
JOURNAL OF MEDICAL SYSTEMS, 2018, 42 (11)
[3]   Deep neural networks are superior to dermatologists in melanoma image classification [J].
Brinker, Titus J. ;
Hekler, Achim ;
Enk, Alexander H. ;
Berking, Carola ;
Haferkamp, Sebastian ;
Hauschild, Axel ;
Weichenthal, Michael ;
Klode, Joachim ;
Schadendorf, Dirk ;
Holland-Letz, Tim ;
von Kalle, Christof ;
Froehling, Stefan ;
Schilling, Bastian ;
Utikal, Jochen S. .
EUROPEAN JOURNAL OF CANCER, 2019, 119 :11-17
[4]   Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task [J].
Brinker, Titus J. ;
Hekler, Achim ;
Enk, Alexander H. ;
Klode, Joachim ;
Hauschild, Axel ;
Berking, Carola ;
Schilling, Bastian ;
Haferkamp, Sebastian ;
Schadendorf, Dirk ;
Holland-Letz, Tim ;
Utikal, Jochen S. ;
von Kalle, Christof .
EUROPEAN JOURNAL OF CANCER, 2019, 113 :47-54
[5]   A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task [J].
Brinker, Titus J. ;
Hekler, Achim ;
Enk, Alexander H. ;
Klode, Joachim ;
Hauschild, Axel ;
Berking, Carola ;
Schilling, Bastian ;
Haferkamp, Sebastian ;
Schadendorf, Dirk ;
Froehling, Stefan ;
Utikal, Jochen S. ;
von Kalle, Christof ;
Ludwig-Peitsch, Wiebke ;
Sirokay, Judith ;
Heinzerling, Lucie ;
Albrecht, Magarete ;
Baratella, Katharina ;
Bischof, Lena ;
Chorti, Eleftheria ;
Dith, Anna ;
Drusio, Christina ;
Giese, Nina ;
Gratsias, Emmanouil ;
Griewank, Klaus ;
Hallasch, Sandra ;
Hanhart, Zdenka ;
Herz, Saskia ;
Hohaus, Katja ;
Jansen, Philipp ;
Jockenhoefer, Finja ;
Kanaki, Theodora ;
Knispel, Sarah ;
Leonhard, Katja ;
Martaki, Anna ;
Matei, Liliana ;
Matull, Johanna ;
Olischewski, Alexandra ;
Petri, Maximilian ;
Placke, Jan-Malte ;
Raub, Simon ;
Salva, Katrin ;
Schlott, Swantje ;
Sody, Elsa ;
Steingrube, Nadine ;
Stoffels, Ingo ;
Ugurel, Selma ;
Sondermann, Wiebke ;
Zaremba, Anne ;
Gebhardt, Christoffer ;
Booken, Nina .
EUROPEAN JOURNAL OF CANCER, 2019, 111 :148-154
[6]   Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review [J].
Brinker, Titus Josef ;
Hekler, Achim ;
Utikal, Jochen Sven ;
Grabe, Niels ;
Schadendorf, Dirk ;
Klode, Joachim ;
Berking, Carola ;
Steeb, Theresa ;
Enk, Alexander H. ;
von Kalle, Christof .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2018, 20 (10)
[7]   Performance of a computer-aided digital dermoscopic image analyzer for melanoma detection in 1,076 pigmented skin lesion biopsies [J].
Del Rosario, Francis ;
Farahi, Jessica M. ;
Drendel, Jesse ;
Buntinx-Krieg, Talayesa ;
Caravaglio, Joseph ;
Domozych, Renee ;
Chapman, Stephanie ;
Braunberger, Taylor ;
Dellavalle, Robert P. ;
Norris, David A. ;
Fathi, Ramin ;
Alkousakis, Theodore .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2018, 78 (05) :927-+
[8]   Accuracy of Computer-Aided Diagnosis of Melanoma A Meta-analysis [J].
Dick, Vincent ;
Sinz, Christoph ;
Mittlboeck, Martina ;
Kittler, Harald ;
Tschandl, Philipp .
JAMA DERMATOLOGY, 2019, 155 (11) :1291-1299
[9]   Computer versus human diagnosis of melanoma: evaluation of the feasibility of an automated diagnostic system in a prospective clinical trial [J].
Dreiseitl, Stephan ;
Binder, Michael ;
Hable, Krispin ;
Kittler, Harald .
MELANOMA RESEARCH, 2009, 19 (03) :180-184
[10]   What is AI? Applications of artificial intelligence to dermatology [J].
Du-Harpur, X. ;
Watt, F. M. ;
Luscombe, N. M. ;
Lynch, M. D. .
BRITISH JOURNAL OF DERMATOLOGY, 2020, 183 (03) :423-430