Track-weighted functional connectivity (TW-FC): A tool for characterizing the structural-functional connections in the brain

被引:33
作者
Calamante, Fernando [1 ,2 ]
Masterton, Richard A. J. [1 ]
Tournier, Jacques-Donald [1 ,2 ]
Smith, Robert E. [1 ,2 ]
Willats, Lisa [1 ]
Raffelt, David [1 ]
Connelly, Alan [1 ,2 ]
机构
[1] Florey Inst Neurosci & Mental Hlth, Heidelberg, Vic, Australia
[2] Univ Melbourne, Dept Med, Austin Hlth & Northern Hlth, Melbourne, Vic, Australia
基金
英国医学研究理事会; 澳大利亚研究理事会;
关键词
Functional connectivity; Structural connectivity; BOLD; Diffusion MRI; Fibre-tracking; Brain networks; RESTING-STATE NETWORKS; DEFAULT MODE; DIFFUSION MRI; SPHERICAL-DECONVOLUTION; TRACTOGRAPHY; DENSITY; MATTER; SCHIZOPHRENIA; ARCHITECTURE; DISTORTIONS;
D O I
10.1016/j.neuroimage.2012.12.054
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
MRI provides a powerful tool for studying the functional and structural connections in the brain non-invasively. The technique of functional connectivity (FC) exploits the intrinsic temporal correlations of slow spontaneous signal fluctuations to characterise brain functional networks. In addition, diffusion MRI fibre-tracking can be used to study the white matter structural connections. In recent years, there has been considerable interest in combining these two techniques to provide an overall structural-functional description of the brain. In this work we applied the recently proposed super-resolution track-weighted imaging (TWI) methodology to demonstrate how whole-brain fibre-tracking data can be combined with FC data to generate a track-weighted (TW) FC map of FC networks. The method was applied to data from 8 healthy volunteers, and illustrated with (i) FC networks obtained using a seeded connectivity-based analysis (seeding in the precuneus/posterior cingulate cortex, PCC, known to be part of the default mode network), and (ii) with FC networks generated using independent component analysis (in particular, the default mode, attention, visual, and sensory-motor networks). TW-FC maps showed high intensity in white matter structures connecting the nodes of the FC networks. For example, the cingulum bundles show the strongest TW-FC values in the PCC seeded-based analysis, due to their major role in the connection between medial frontal cortex and precuneus/posterior cingulate cortex; similarly the superior longitudinal fasciculus was well represented in the attention network, the optic radiations in the visual network, and the corticospinal tract and corpus callosum in the sensory-motor network. The TW-FC maps highlight the white matter connections associated with a given PC network, and their intensity in a given voxel reflects the functional connectivity of the part of the nodes of the network linked by the structural connections traversing that voxel. They therefore contain a different (and novel) image contrast from that of the images used to generate them. The results shown in this study illustrate the potential of the TW-FC approach for the fusion of structural and functional data into a single quantitative image. This technique could therefore have important applications in neuroscience and neurology, such as for voxel-based comparison studies. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:199 / 210
页数:12
相关论文
共 66 条
[1]   How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging [J].
Andersson, JLR ;
Skare, S ;
Ashburner, J .
NEUROIMAGE, 2003, 20 (02) :870-888
[2]   Voxel-based morphometry - The methods [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2000, 11 (06) :805-821
[3]   Inferring microstructural features and the physiological state of tissues from diffusion-weighted images [J].
Basser, PJ .
NMR IN BIOMEDICINE, 1995, 8 (7-8) :333-344
[4]   Probabilistic independent component analysis for functional magnetic resonance imaging [J].
Beckmann, CF ;
Smith, SA .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (02) :137-152
[5]   Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? [J].
Behrens, T. E. J. ;
Berg, H. Johansen ;
Jbabdi, S. ;
Rushworth, M. F. S. ;
Woolrich, M. W. .
NEUROIMAGE, 2007, 34 (01) :144-155
[6]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541
[7]   Toward discovery science of human brain function [J].
Biswal, Bharat B. ;
Mennes, Maarten ;
Zuo, Xi-Nian ;
Gohel, Suril ;
Kelly, Clare ;
Smith, Steve M. ;
Beckmann, Christian F. ;
Adelstein, Jonathan S. ;
Buckner, Randy L. ;
Colcombe, Stan ;
Dogonowski, Anne-Marie ;
Ernst, Monique ;
Fair, Damien ;
Hampson, Michelle ;
Hoptman, Matthew J. ;
Hyde, James S. ;
Kiviniemi, Vesa J. ;
Kotter, Rolf ;
Li, Shi-Jiang ;
Lin, Ching-Po ;
Lowe, Mark J. ;
Mackay, Clare ;
Madden, David J. ;
Madsen, Kristoffer H. ;
Margulies, Daniel S. ;
Mayberg, Helen S. ;
McMahon, Katie ;
Monk, Christopher S. ;
Mostofsky, Stewart H. ;
Nagel, Bonnie J. ;
Pekar, James J. ;
Peltier, Scott J. ;
Petersen, Steven E. ;
Riedl, Valentin ;
Rombouts, Serge A. R. B. ;
Rypma, Bart ;
Schlaggar, Bradley L. ;
Schmidt, Sein ;
Seidler, Rachael D. ;
Siegle, Greg J. ;
Sorg, Christian ;
Teng, Gao-Jun ;
Veijola, Juha ;
Villringer, Arno ;
Walter, Martin ;
Wang, Lihong ;
Weng, Xu-Chu ;
Whitfield-Gabrieli, Susan ;
Williamson, Peter ;
Windischberger, Christian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4734-4739
[8]   Determining functional connectivity using fMRI data with diffusion-based anatomical weighting [J].
Bowman, F. DuBois ;
Zhang, Lijun ;
Derado, Gordana ;
Chen, Shuo .
NEUROIMAGE, 2012, 62 (03) :1769-1779
[9]   Modeling the outcome of structural disconnection on resting-state functional connectivity [J].
Cabral, Joana ;
Hugues, Etienne ;
Kringelbach, Morten L. ;
Deco, Gustavo .
NEUROIMAGE, 2012, 62 (03) :1342-1353
[10]  
Calamante F., 2012, HUM BRAIN MAPP