Study of a graphene-like anode material in N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid for Li-ion batteries

被引:6
作者
Galinski, Maciej [1 ]
Acznik, Ilona [1 ]
机构
[1] Poznan Univ Tech, Fac Chem Technol, PL-60965 Poznan, Poland
关键词
Graphite oxide; Graphene sheets; Ionic liquids; Lithium-ion batteries; ENHANCED LITHIUM STORAGE; REVERSIBLE CAPACITY; VINYLENE CARBONATE; GRAPHITE; NANOSHEETS; ELECTRODES; SHEETS;
D O I
10.1016/j.jpowsour.2012.05.039
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene nanosheets or reduced graphite oxide materials recently have attracted great attention because of their excellent electrochemical properties such as excellent electrical conductivity and high specific capacity originating from their structure, i.e., two-dimensional layers with one-atomic thickness. This work is focused on reduced graphite oxide (RGO) applied as negative electrode in Li-ion cell with ionic liquid (N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide, Py13TFSI) as electrolyte. Three different electrochemical techniques, e.g., galvanostatic charging/discharging, cyclic voltammetry and electrochemical impedance spectroscopy were applied for full electrochemical characterisation of these materials. The results proved that RGO gives good reversible capacity of ca. 550 mAh g(-1) (at current density of 50 mA g(-1)) working together with the ionic liquid. This value is comparable to that characteristic for cells operating with conventional electrolyte (cyclic carbonates). (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:5 / 10
页数:6
相关论文
共 40 条
[1]   The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets [J].
Akhavan, O. .
CARBON, 2010, 48 (02) :509-519
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]  
Armand M, 2009, NAT MATER, V8, P621, DOI [10.1038/NMAT2448, 10.1038/nmat2448]
[4]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[5]   The Effect of Vinylene Carbonate Additive on Surface Film Formation on Both Electrodes in Li-Ion Batteries [J].
El Ouatani, L. ;
Dedryvere, R. ;
Siret, C. ;
Biensan, P. ;
Reynaud, S. ;
Iratcabal, P. ;
Gonbeau, D. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (02) :A103-A113
[6]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[7]   A Green Approach to the Synthesis of Graphene Nanosheets [J].
Guo, Hui-Lin ;
Wang, Xian-Fei ;
Qian, Qing-Yun ;
Wang, Feng-Bin ;
Xia, Xing-Hua .
ACS NANO, 2009, 3 (09) :2653-2659
[8]   Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries [J].
Guo, Peng ;
Song, Huaihe ;
Chen, Xiaohong .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (06) :1320-1324
[9]   Stabilisation of lithiated graphite in an electrolyte based on ionic liquids:: an electrochemical and scanning electron microscopy study [J].
Holzapfel, M ;
Jost, C ;
Prodi-Schwab, A ;
Krumeich, F ;
Würsig, A ;
Buqa, H ;
Novák, P .
CARBON, 2005, 43 (07) :1488-1498
[10]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339