Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping

被引:41
作者
Park, Inhye [2 ]
Choi, Jaewon
Lee, Moung Jin [3 ,4 ]
Lee, Saro [1 ]
机构
[1] Korea Inst Geosci & Mineral Resources KIGAM, Geol Mapping Dept, Taejon 305350, South Korea
[2] Univ Seoul, Dept Geoinformat, Seoul 130743, South Korea
[3] Yonsei Univ, Dept Earth Syst Sci, Seoul 120749, South Korea
[4] Korea Environm Inst, Seoul 122706, South Korea
关键词
Adaptive neuro-fuzzy inference system (ANFIS); Ground subsidence; Abandoned underground coal mine; GIS; Korea; PREDICTION; PROVINCE; MODEL;
D O I
10.1016/j.cageo.2012.01.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We constructed hazard maps of ground subsidence around abandoned underground coal mines (AUCMs) in Samcheok City, Korea, using an adaptive neuro-fuzzy inference system (ANFIS) and a geographical information system (GIS). To evaluate the factors related to ground subsidence, a spatial database was constructed from topographic, geologic, mine tunnel, land use, and ground subsidence maps. An attribute database was also constructed from field investigations and reports on existing ground subsidence areas at the study site. Five major factors causing ground subsidence were extracted: (1) depth of drift; (2) distance from drift; (3) slope gradient; (4) geology; and (5) land use. The adaptive ANFIS model with different types of membership functions (MFs) was then applied for ground subsidence hazard mapping in the study area. Two ground subsidence hazard maps were prepared using the different MFs. Finally, the resulting ground subsidence hazard maps were validated using the ground subsidence test data which were not used for training the ANFIS. The validation results showed 95.12% accuracy using the generalized bell-shaped MF model and 94.94% accuracy using the Sigmoidal2 MF model. These accuracy results show that an ANFIS can be an effective tool in ground subsidence hazard mapping. Analysis of ground subsidence with the ANFIS model suggests that quantitative analysis of ground subsidence near AUCMs is possible. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:228 / 238
页数:11
相关论文
共 50 条
  • [31] Adaptive neuro-fuzzy inference system for prediction of water level in reservoir
    Chang, FJ
    Chang, YT
    ADVANCES IN WATER RESOURCES, 2006, 29 (01) : 1 - 10
  • [32] Runoff estimation using modified adaptive neuro-fuzzy inference system
    Nath, Amitabha
    Mthethwa, Fisokuhle
    Saha, Goutam
    ENVIRONMENTAL ENGINEERING RESEARCH, 2020, 25 (04) : 545 - 553
  • [33] Application of an Adaptive "Neuro-Fuzzy" Inference System in Modeling Cutting Temperature during Hard Turning
    Savkovic, Borislav
    Kovac, Pavel
    Dudic, Branislav
    Rodic, Dragan
    Taric, Mirfad
    Gregus, Michal
    APPLIED SCIENCES-BASEL, 2019, 9 (18):
  • [34] Monthly river flow forecasting by an adaptive neuro-fuzzy inference system
    Firat, Mahmut
    Turan, M. Erkan
    WATER AND ENVIRONMENT JOURNAL, 2010, 24 (02) : 116 - 125
  • [35] An adaptive neuro-fuzzy inference system model for predicting the performance of a refrigeration system with a cooling tower
    Hosoz, M.
    Ertunc, H. M.
    Bulgurcu, H.
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (11) : 14148 - 14155
  • [36] Swine live weight estimation by adaptive neuro-fuzzy inference system
    Okinda, Cedric
    Liu, Longhen
    Zhang, Guangyue
    Shen, Mingxia
    INDIAN JOURNAL OF ANIMAL RESEARCH, 2018, 52 (06) : 923 - 928
  • [37] Adaptive neuro-fuzzy inference system for combined forecasts in a panel manufacturer
    Wang, Fu-Kwun
    Chang, Ku-Kuang
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (12) : 8119 - 8126
  • [38] State of charge estimation based on adaptive neuro-fuzzy inference system
    Guan Jiansheng
    Xu Wenjin
    Zhang Abu
    ICCSE'2006: Proceedings of the First International Conference on Computer Science & Education: ADVANCED COMPUTER TECHNOLOGY, NEW EDUCATION, 2006, : 840 - 843
  • [39] Adaptive neuro-fuzzy inference system for gap discontinuities in coplanar waveguides
    Güler, I
    Übeyli, ED
    INTERNATIONAL JOURNAL OF ELECTRONICS, 2005, 92 (03) : 173 - 188
  • [40] Shallow Foundation Settlement Quantification: Application of Hybridized Adaptive Neuro-Fuzzy Inference System Model
    Mohammed, Mariamme
    Sharafati, Ahmad
    Al-Ansari, Nadhir
    Yaseen, Zaher Mundher
    ADVANCES IN CIVIL ENGINEERING, 2020, 2020