Normal bases of ray class fields over imaginary quadratic fields

被引:8
作者
Jung, Ho Yun [1 ]
Koo, Ja Kyung [1 ]
Shin, Dong Hwa [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 3731, South Korea
关键词
Class fields; Modular functions; Normal bases;
D O I
10.1007/s00209-011-0854-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a criterion for a normal basis (Theorem 2.4), and prove that the singular values of certain Siegel functions form normal bases of ray class fields over imaginary quadratic fields other than Q(root-1) and Q(root-3) (Theorem 4.2). This result would be an answer for the Lang-Schertz conjecture on a ray class field with modulus generated by an integer (>= 2) (Remark 4.3).
引用
收藏
页码:109 / 116
页数:8
相关论文
共 17 条