Normal bases of ray class fields over imaginary quadratic fields

被引:8
作者
Jung, Ho Yun [1 ]
Koo, Ja Kyung [1 ]
Shin, Dong Hwa [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 3731, South Korea
关键词
Class fields; Modular functions; Normal bases;
D O I
10.1007/s00209-011-0854-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a criterion for a normal basis (Theorem 2.4), and prove that the singular values of certain Siegel functions form normal bases of ray class fields over imaginary quadratic fields other than Q(root-1) and Q(root-3) (Theorem 4.2). This result would be an answer for the Lang-Schertz conjecture on a ray class field with modulus generated by an integer (>= 2) (Remark 4.3).
引用
收藏
页码:109 / 116
页数:8
相关论文
共 17 条
[1]  
Cox D., 1989, Primes of the Form x2 + ny2: Fermat, Class Field Theory and Complex Multiplication
[2]  
Gee A., 1999, J THEOR NOMBR BORDX, V11, P45
[3]  
Jung H.Y., RAY CLASS INVA UNPUB
[4]   Construction of a normal basis by special values of Siegel modular functions [J].
Komatsu, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (02) :315-323
[5]   On some arithmetic properties of Siegel functions [J].
Koo, Ja Kyung ;
Shin, Dong Hwa .
MATHEMATISCHE ZEITSCHRIFT, 2010, 264 (01) :137-177
[6]  
Kubert D S., 1981, Modular Units (Grundlehren der Mathematischen Wissenschaften vol 244)
[7]  
Lang S., 1987, GRADUATE TEXTS MATH, V112
[8]  
Leopoldt H.W., 1959, J. reine angew. Math., V201, P119
[9]   ON AN EXTENSION OF A THEOREM OF S. CHOWLA [J].
OKADA, T .
ACTA ARITHMETICA, 1981, 38 (04) :341-345
[10]  
OKADA T, 1980, J LOND MATH SOC, V22, P221