Simple Jordan color algebras arising from associative graded algebras

被引:6
作者
Bergen, J [1 ]
Grzeszczuk, P
机构
[1] De Paul Univ, Dept Math, Chicago, IL 60614 USA
[2] Bialystok Tech Inst, Inst Comp Sci, PL-15351 Bialystok, Poland
[3] Univ Bialystok, Bialystok, Poland
关键词
D O I
10.1006/jabr.2001.9005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If R is a G-graded associative algebra, where G is an abelian group and 6 is a bicharacter for G, then R also has the structure of a Jordan color algebra. In addition, if R is endowed with a color involution *, then the symmetric elements S under * are also a Jordan color algebra. Generalizing results of I. N. Herstein, we examine the Jordan color structure of R and S. In particular, we show that if R is a graded-simple algebra, then both R and S are simple Jordan color algebras, except for some special cases which cannot arise in the ordinary case. (C) 2001 Elsevier Science.
引用
收藏
页码:915 / 950
页数:36
相关论文
共 50 条
[41]   ON HERSTEINS THEOREMS RELATING JORDAN AND ASSOCIATIVE ALGEBRAS [J].
MCCRIMMON, K .
JOURNAL OF ALGEBRA, 1969, 13 (03) :382-+
[42]   THE ZELMANOV APPROACH TO JORDAN HOMOMORPHISMS OF ASSOCIATIVE ALGEBRAS [J].
MCCRIMMON, K .
JOURNAL OF ALGEBRA, 1989, 123 (02) :457-477
[43]   Ternary derivations of separable associative and jordan algebras [J].
Shestakov, A. I. .
SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (05) :943-956
[44]   Associative and Jordan Algebras Generated by Two Idempotents [J].
Louis Rowen ;
Yoav Segev .
Algebras and Representation Theory, 2017, 20 :1495-1504
[45]   Realization of graded-simple algebras as loop algebras [J].
Allison, Bruce ;
Berman, Stephen ;
Faulkner, John ;
Pianzola, Arturo .
FORUM MATHEMATICUM, 2008, 20 (03) :395-432
[46]   STRUCTURE OF ASSOCIATIVE SUBALGEBRAS OF JORDAN OPERATOR ALGEBRAS [J].
Hamhalter, Jan ;
Turilova, Ekaterina .
QUARTERLY JOURNAL OF MATHEMATICS, 2013, 64 (02) :397-408
[47]   Simple Lie algebras arising from Steinberg algebras of Hausdorff ample groupoids [J].
Tran Giang Nam .
JOURNAL OF ALGEBRA, 2022, 595 :194-215
[48]   Derivation Simple Color Algebras and Semisimple Lie Color Algebras [J].
Zhang, Xuemei ;
Zhou, Jianhua .
COMMUNICATIONS IN ALGEBRA, 2009, 37 (01) :242-257
[49]   Identities of graded simple algebras [J].
Repovs, Dusan ;
Zaicev, Mikhail .
LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (01) :44-57
[50]   Simple graded commutative algebras [J].
Morier-Genoud, Sophie ;
Ovsienko, Valentin .
JOURNAL OF ALGEBRA, 2010, 323 (06) :1649-1664