Simple Jordan color algebras arising from associative graded algebras

被引:6
作者
Bergen, J [1 ]
Grzeszczuk, P
机构
[1] De Paul Univ, Dept Math, Chicago, IL 60614 USA
[2] Bialystok Tech Inst, Inst Comp Sci, PL-15351 Bialystok, Poland
[3] Univ Bialystok, Bialystok, Poland
关键词
D O I
10.1006/jabr.2001.9005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If R is a G-graded associative algebra, where G is an abelian group and 6 is a bicharacter for G, then R also has the structure of a Jordan color algebra. In addition, if R is endowed with a color involution *, then the symmetric elements S under * are also a Jordan color algebra. Generalizing results of I. N. Herstein, we examine the Jordan color structure of R and S. In particular, we show that if R is a graded-simple algebra, then both R and S are simple Jordan color algebras, except for some special cases which cannot arise in the ordinary case. (C) 2001 Elsevier Science.
引用
收藏
页码:915 / 950
页数:36
相关论文
共 50 条
[31]   A FORMULA IN SIMPLE JORDAN ALGEBRAS [J].
SATAKE, I .
TOHOKU MATHEMATICAL JOURNAL, 1984, 36 (04) :611-622
[32]   Graded cluster algebras arising from marked surfaces [J].
Booker-Price, Thomas .
JOURNAL OF ALGEBRA, 2020, 560 :89-113
[33]   Differentiably simple Jordan algebras [J].
A. A. Popov .
Siberian Mathematical Journal, 2013, 54 :713-721
[34]   THE EXCEPTIONAL SIMPLE JORDAN ALGEBRAS [J].
SCHAFER, RD .
AMERICAN JOURNAL OF MATHEMATICS, 1948, 70 (01) :82-94
[35]   THE EXCEPTIONAL SIMPLE JORDAN ALGEBRAS [J].
SCHAFER, RD .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (05) :479-479
[36]   STRUCTURE GROUPS AND LIE-ALGEBRAS OF JORDAN ALGEBRAS OF SYMMETRIC ELEMENTS OF ASSOCIATIVE ALGEBRAS WITH INVOLUTION [J].
JACOBSON, N .
ADVANCES IN MATHEMATICS, 1976, 20 (02) :106-150
[37]   Associative and Jordan Algebras Generated by Two Idempotents [J].
Rowen, Louis ;
Segev, Yoav .
ALGEBRAS AND REPRESENTATION THEORY, 2017, 20 (06) :1495-1504
[38]   Lie, Jordan and proper codimensions of associative algebras [J].
Giambruno A. ;
Zaicev M. .
Rendiconti del Circolo Matematico di Palermo, 2008, 57 (2) :161-171
[39]   NONCOMMUTATIVE JORDAN ALGEBRAS A UNDER THE CONDITION THAT A(+) IS ASSOCIATIVE [J].
SKOSYRSKII, VG .
SIBERIAN MATHEMATICAL JOURNAL, 1991, 32 (06) :1024-1030
[40]   Ternary derivations of separable associative and jordan algebras [J].
A. I. Shestakov .
Siberian Mathematical Journal, 2012, 53 :943-956