Simple Jordan color algebras arising from associative graded algebras

被引:6
作者
Bergen, J [1 ]
Grzeszczuk, P
机构
[1] De Paul Univ, Dept Math, Chicago, IL 60614 USA
[2] Bialystok Tech Inst, Inst Comp Sci, PL-15351 Bialystok, Poland
[3] Univ Bialystok, Bialystok, Poland
关键词
D O I
10.1006/jabr.2001.9005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If R is a G-graded associative algebra, where G is an abelian group and 6 is a bicharacter for G, then R also has the structure of a Jordan color algebra. In addition, if R is endowed with a color involution *, then the symmetric elements S under * are also a Jordan color algebra. Generalizing results of I. N. Herstein, we examine the Jordan color structure of R and S. In particular, we show that if R is a graded-simple algebra, then both R and S are simple Jordan color algebras, except for some special cases which cannot arise in the ordinary case. (C) 2001 Elsevier Science.
引用
收藏
页码:915 / 950
页数:36
相关论文
共 50 条
[21]   LEVITZKI RADICAL IN JORDAN AND ASSOCIATIVE ALGEBRAS [J].
RICH, M .
NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01) :A2-A2
[22]   ON GRADED SIMPLE ALGEBRAS [J].
Hazrat, Roozbeh ;
Millar, Judith R. .
JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2010, 5 (01) :113-124
[23]   JORDAN ALGEBRAS ARISING IN POPULATION GENETICS [J].
HOLGATE, P .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1967, 15 :291-&
[24]   Lie ideals of graded associative algebras [J].
Bierwirth, Hannes ;
Siles Molina, Mercedes .
ISRAEL JOURNAL OF MATHEMATICS, 2012, 191 (01) :111-136
[25]   Lie ideals of graded associative algebras [J].
Hannes Bierwirth ;
Mercedes Siles Molina .
Israel Journal of Mathematics, 2012, 191 :111-136
[26]   DERIVATION ALGEBRAS AND MULTIPLICATION ALGEBRAS OF SEMI-SIMPLE JORDAN ALGEBRAS [J].
JACOBSON, N .
ANNALS OF MATHEMATICS, 1949, 50 (04) :866-874
[27]   Graded contractions of Jordan algebras and of their representations [J].
Kashuba, I ;
Patera, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (50) :12453-12473
[28]   Homogeneously Simple Associative Algebras [J].
Koreshkov, N. A. .
RUSSIAN MATHEMATICS, 2011, 55 (05) :14-18
[29]   Simple decompositions of simple Jordan algebras [J].
Tvalavadze, MV ;
Tvalavadze, TV .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (07) :2403-2421
[30]   A FORMULA IN SIMPLE JORDAN ALGEBRAS [J].
SATAKE, I .
TOHOKU MATHEMATICAL JOURNAL, 1984, 36 (04) :611-622