Interpreting Meta-Analyses of Genome-Wide Association Studies

被引:129
作者
Han, Buhm [1 ]
Eskin, Eleazar [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90024 USA
[2] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
GENE-ENVIRONMENT INTERACTIONS; RANDOM-EFFECTS MODEL; STATISTICAL-METHODS; RISK LOCI; DISEASE; HETEROGENEITY; IMPUTATION; ETHNICITY; REPLICATION; VARIANTS;
D O I
10.1371/journal.pgen.1002555
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Meta-analysis is an increasingly popular tool for combining multiple genome-wide association studies in a single analysis to identify associations with small effect sizes. The effect sizes between studies in a meta-analysis may differ and these differences, or heterogeneity, can be caused by many factors. If heterogeneity is observed in the results of a meta-analysis, interpreting the cause of heterogeneity is important because the correct interpretation can lead to a better understanding of the disease and a more effective design of a replication study. However, interpreting heterogeneous results is difficult. The standard approach of examining the association p-values of the studies does not effectively predict if the effect exists in each study. In this paper, we propose a framework facilitating the interpretation of the results of a meta-analysis. Our framework is based on a new statistic representing the posterior probability that the effect exists in each study, which is estimated utilizing cross-study information. Simulations and application to the real data show that our framework can effectively segregate the studies predicted to have an effect, the studies predicted to not have an effect, and the ambiguous studies that are underpowered. In addition to helping interpretation, the new framework also allows us to develop a new association testing procedure taking into account the existence of effect.
引用
收藏
页数:11
相关论文
共 43 条
[1]  
Barrett JC, 2009, NAT GENET, V41
[2]   Population-Specific Risk of Type 2 Diabetes Conferred by HAT4A P2 Promoter Variants A Lesson for Replication Studies [J].
Barroso, Ines ;
Luan, Jian'an ;
Wheeler, Eleanor ;
Whittaker, Pamela ;
Wasson, Jon ;
Zeggini, Eleftheria ;
Weedon, Michael N. ;
Hunt, Sarah ;
Venkatesh, Ranganath ;
Frayling, Timothy M. ;
Delgado, Marcos ;
Neuman, Rosalind J. ;
Zhao, Jinghua ;
Sherva, Richard ;
Glaser, Benjamin ;
Walker, Mark ;
Hitman, Graham ;
McCarthy, Mark I. ;
Hattersley, Andrew T. ;
Permutt, M. Alan ;
Wareham, Nicholas J. ;
Deloukas, Panagiotis .
DIABETES, 2008, 57 (11) :3161-3165
[3]  
Biggerstaff BJ, 1997, STAT MED, V16, P753, DOI 10.1002/(SICI)1097-0258(19970415)16:7<753::AID-SIM494>3.3.CO
[4]  
2-7
[5]   Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J].
Burton, Paul R. ;
Clayton, David G. ;
Cardon, Lon R. ;
Craddock, Nick ;
Deloukas, Panos ;
Duncanson, Audrey ;
Kwiatkowski, Dominic P. ;
McCarthy, Mark I. ;
Ouwehand, Willem H. ;
Samani, Nilesh J. ;
Todd, John A. ;
Donnelly, Peter ;
Barrett, Jeffrey C. ;
Davison, Dan ;
Easton, Doug ;
Evans, David ;
Leung, Hin-Tak ;
Marchini, Jonathan L. ;
Morris, Andrew P. ;
Spencer, Chris C. A. ;
Tobin, Martin D. ;
Attwood, Antony P. ;
Boorman, James P. ;
Cant, Barbara ;
Everson, Ursula ;
Hussey, Judith M. ;
Jolley, Jennifer D. ;
Knight, Alexandra S. ;
Koch, Kerstin ;
Meech, Elizabeth ;
Nutland, Sarah ;
Prowse, Christopher V. ;
Stevens, Helen E. ;
Taylor, Niall C. ;
Walters, Graham R. ;
Walker, Neil M. ;
Watkins, Nicholas A. ;
Winzer, Thilo ;
Jones, Richard W. ;
McArdle, Wendy L. ;
Ring, Susan M. ;
Strachan, David P. ;
Pembrey, Marcus ;
Breen, Gerome ;
St Clair, David ;
Caesar, Sian ;
Gordon-Smith, Katherine ;
Jones, Lisa ;
Fraser, Christine ;
Green, Elain K. .
NATURE, 2007, 447 (7145) :661-678
[6]   Prioritizing GWAS Results: A Review of Statistical Methods and Recommendations for Their Application [J].
Cantor, Rita M. ;
Lange, Kenneth ;
Sinsheimer, Janet S. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2010, 86 (01) :6-22
[7]   Opinion - Gene-environment interactions in psychiatry: joining forces with neuroscience [J].
Caspi, Avshalom ;
Moffitt, Terrie E. .
NATURE REVIEWS NEUROSCIENCE, 2006, 7 (07) :583-590
[8]   THE COMBINATION OF ESTIMATES FROM DIFFERENT EXPERIMENTS [J].
COCHRAN, WG .
BIOMETRICS, 1954, 10 (01) :101-129
[9]   Single nucleotide polymorphisms that influence lipid metabolism: Interaction with dietary factors [J].
Corella, D ;
Ordovas, JM .
ANNUAL REVIEW OF NUTRITION, 2005, 25 :341-390
[10]   Practical aspects of imputation-driven meta-analysis of genome-wide association studies [J].
de Bakker, Paul I. W. ;
Ferreira, Manuel A. R. ;
Jia, Xiaoming ;
Neale, Benjamin M. ;
Raychaudhuri, Soumya ;
Voight, Benjamin F. .
HUMAN MOLECULAR GENETICS, 2008, 17 :R122-R128