A Neuro-Inspired Spike-Based PID Motor Controller for Multi-Motor Robots with Low Cost FPGAs

被引:61
作者
Jimenez-Fernandez, Angel [1 ]
Jimenez-Moreno, Gabriel [1 ]
Linares-Barranco, Alejandro [1 ]
Dominguez-Morales, Manuel J. [1 ]
Paz-Vicente, Rafael [1 ]
Civit-Balcells, Anton [1 ]
机构
[1] Univ Seville, ETSI Informatca, Deparment Comp Architecture & Technol, E-41012 Seville, Spain
关键词
neuro-controllers; neuromorphic engineering; bio-inspired systems and control; control system analysis; programmable logic devices; pulse frequency modulation; sensor-motor integration; SILICON COCHLEA; AER; RETINA;
D O I
10.3390/s120403831
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control.
引用
收藏
页码:3831 / 3856
页数:26
相关论文
共 30 条
[21]  
Liu SC, 2010, IEEE INT SYMP CIRC S, P2027, DOI 10.1109/ISCAS.2010.5537164
[22]  
Mahowald M., 1992, THESIS CALTECH PASAD
[23]  
Miall RC, 1998, NOVART FDN SYMP, V218, P272
[24]  
Ogata K., 2002, Modern Control Engineering, VVolume 4
[25]   Quantifying input and output spike statistics of a winner-take-all network in a vision system [J].
Oster, Matthias ;
Douglas, Rodney ;
Liu, Shih-Chii .
2007 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, 2007, :853-856
[26]   Synthetic retina for AER systems development [J].
Paz-Vicente, R. ;
Linares-Barranco, A. ;
Jimenez-Fernandez, A. ;
Jimenez-Moreno, G. ;
Civit-Balcells, A. .
2009 IEEE/ACS INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS, VOLS 1 AND 2, 2009, :907-912
[27]   CAVIAR: A 45k Neuron, 5M Synapse, 12G Connects/s AER Hardware Sensory-Processing-Learning-Actuating System for High-Speed Visual Object Recognition and Tracking [J].
Serrano-Gotarredona, Rafael ;
Oster, Matthias ;
Lichtsteiner, Patrick ;
Linares-Barranco, Alejandro ;
Paz-Vicente, Rafael ;
Gomez-Rodriguez, Francisco ;
Camunas-Mesa, Luis ;
Berner, Raphael ;
Rivas-Perez, Manuel ;
Delbrueck, Tobi ;
Liu, Shih-Chii ;
Douglas, Rodney ;
Hafliger, Philipp ;
Jimenez-Moreno, Gabriel ;
Civit Ballcels, Anton ;
Serrano-Gotarredona, Teresa ;
Acosta-Jimenez, Antonio J. ;
Linares-Barranco, Bernabe .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (09) :1417-1438
[28]  
Shepherd G.M., 1990, SYNAPTIC ORG BRAIN, V3rd
[29]  
Sivilotti M.A., 1991, Wiring Considerations in Analog VLSI Systems, with Application to Field-Programmable Networks
[30]   A Hebbian feedback covariance learning paradigm for self-tuning optimal control [J].
Young, DL ;
Poon, CS .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2001, 31 (02) :173-186