Numerical and experimental investigation of heat transfer and fluid flow characteristics in a micro-scale serpentine channel

被引:72
作者
Abed, Waleed M. [1 ]
Whalley, Richard D. [1 ]
Dennis, David J. C. [1 ]
Poole, Robert J. [1 ]
机构
[1] Univ Liverpool, Sch Engn, Liverpool L69 3GH, Merseyside, England
关键词
Laminar flow; Serpentine microchannel; Convective heat transfer enhancement; Pressure drop losses; Secondary flow; Dean vortices; PERIODIC ZIGZAG CHANNELS; CHAOTIC ADVECTION; FORCED-CONVECTION; CROSS-SECTIONS; LAMINAR-FLOW; TRANSFER SIMULATIONS; VISCOUS-FLOW; SQUARE DUCT; MICROCHANNELS;
D O I
10.1016/j.ijheatmasstransfer.2015.04.062
中图分类号
O414.1 [热力学];
学科分类号
摘要
A combined experimental and numerical investigation is carried out to study the characteristics of laminar flow and forced convection heat transfer in a square cross-section wavy "serpentine" microchannel with the upper wall insulated and other side walls held at constant temperature. Experimental measurements of convective heat transfer and pressure drop are performed for 30/70% and 10/90% by weight mixtures of glycerine/water over a range of Dean number from 0.6 to 80. Complementary three-dimensional computational fluid dynamics numerical simulations are also conducted for the same conditions. The results show that the growth of secondary-flow vortices promotes fluid mixing in the serpentine microchannel and leads to an enhancement of the convective heat transfer. As a consequence the serpentine microchannel is able to enhance the performance of heat transfer relative to a straight microchannel over the entire range of Dean number. Meanwhile, at these values of Prandtl number the relative pressure-drop losses increase with increasing Dean number. These increased pressure-drop losses are rather modest over the whole range of Dean number compared with the significant enhancement in heat transfer. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:790 / 802
页数:13
相关论文
共 50 条
  • [1] Experimental and Numerical Investigation of Fluid Flow and Heat Transfer in Circular Micro-Channel
    Almaneea, Abdulmajeed
    SAINS MALAYSIANA, 2020, 49 (10): : 2599 - 2608
  • [2] Local flow and heat transfer characteristics of viscoelastic fluid in a serpentine channel
    Tatsumi, Kazuya
    Nagasaka, Wataru
    Kimura, Ryuichi
    Shinotsuka, Naoaki
    Kuriyama, Reiko
    Nakabe, Kazuyoshi
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 138 : 432 - 442
  • [3] Numerical Investigation on the Fluid Flow and Heat Transfer in the Entrance Region of Wavy Channel
    Mohamed, Nabou
    Wided, Biara Ratiba
    Mohamed, El Mir
    Abd el Karim, Missoum
    Mohamed, Bouanini
    TERRAGREEN 13 INTERNATIONAL CONFERENCE 2013 - ADVANCEMENTS IN RENEWABLE ENERGY AND CLEAN ENVIRONMENT, 2013, 36 : 76 - 85
  • [4] Numerical analysis of the flow and heat transfer characteristics in serpentine microchannel with variable bend amplitude
    Zhang, Hui
    Liu, Xianfei
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2021, 31 (06) : 2022 - 2041
  • [5] Numerical Study for Fluid Flow and Heat Transfer Characteristics in a Corrugating Channel
    Nashee, Sarah R.
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2023, 41 (02) : 392 - 398
  • [6] Flow Observation and Heat Transfer Performance of Viscoelastic Fluid Flow in a Serpentine Channel
    Tatsumi, K.
    Nakajima, O.
    Nagasaka, W.
    Nakabe, K.
    THMT-12. PROCEEDINGS OF THE SEVENTH INTERNATIONAL SYMPOSIUM ON TURBULENCE, HEAT AND MASS TRANSFER, 2012, : 2492 - 2503
  • [7] Experimental investigation on fluid mechanics of micro-channel heat transfer devices
    Spizzichino, M.
    Sinibaldi, G.
    Romano, G. P.
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2020, 118
  • [8] Investigation of fluid flow and heat transfer in wavy micro-channels with alternating secondary branches
    Chiam, Zhong Lin
    Lee, Poh Seng
    Singh, Pawan Kumar
    Mou, Nasi
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 101 : 1316 - 1330
  • [9] Experimental investigation of the impact of elastic turbulence on heat transfer in a serpentine channel
    Abed, Waleed M.
    Whalley, Richard D.
    Dennis, David J. C.
    Poole, Robert J.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2016, 231 : 68 - 78
  • [10] Numerical study of fluid flow and heat transfer in a multi-port serpentine meso-channel heat exchanger
    Dehghandokht, Masoud
    Khan, Mesbah G.
    Fartaj, Amir
    Sanaye, Sepehr
    APPLIED THERMAL ENGINEERING, 2011, 31 (10) : 1588 - 1599