Microscopy with undetected photons in the mid-infrared

被引:118
作者
Kviatkovsky, Inna [1 ]
Chrzanowski, Helen M. [1 ]
Avery, Ellen G. [2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ]
Bartolomaeus, Hendrik [2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ]
Ramelow, Sven [1 ,11 ]
机构
[1] Humboldt Univ, Inst Phys, Berlin, Germany
[2] Cooperat Charite Univ Med Berlin, Expt & Clin Res Ctr, Berlin, Germany
[3] Max Delbruck Ctr Mol Med, Berlin, Germany
[4] Charite Univ Med Berlin, Berlin, Germany
[5] Free Univ Berlin, Berlin, Germany
[6] Humboldt Univ, Berlin, Germany
[7] Berlin Inst Hlth, Berlin, Germany
[8] Helmholtz Assoc, Max Delbruck Ctr Mol Med, Berlin, Germany
[9] DZHK German Ctr Cardiovasc Res, Partner Site Berlin, Berlin, Germany
[10] Berlin Inst Hlth BIH, Berlin, Germany
[11] Humboldt Univ, IRIS Adlershof, Berlin, Germany
关键词
INFRARED-SPECTROSCOPY; INDUCED COHERENCE; STATE;
D O I
10.1126/sciadv.abd0264
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Owing to its capacity for unique (bio)-chemical specificity, microscopy with mid-infrared (IR) illumination holds tremendous promise for a wide range of biomedical and industrial applications. The primary limitation, however, remains detection, with current mid-IR detection technology often marrying inferior technical capabilities with prohibitive costs. Here, we experimentally show how nonlinear interferometry with entangled light can provide a powerful tool for mid-IR microscopy while only requiring near-IR detection with a silicon-based camera. In this proof-of-principle implementation, we demonstrate widefield imaging over a broad wavelength range covering 3.4 to 4.3 mu m and demonstrate a spatial resolution of 35 mu m for images containing 650 resolved elements. Moreover, we demonstrate that our technique is suitable for acquiring microscopic images of biological tissue samples in the mid-IR. These results form a fresh perspective for potential relevance of quantum imaging techniques in the life sciences.
引用
收藏
页数:6
相关论文
共 36 条
[1]  
Bellisola G, 2012, AM J CANCER RES, V2, P1
[2]   Infrared Spectroscopic Imaging: The Next Generation [J].
Bhargava, Rohit .
APPLIED SPECTROSCOPY, 2012, 66 (10) :1091-1120
[3]   Simultaneous near-field and far-field spatial quantum correlations in the high-gain regime of parametric down-conversion [J].
Brambilla, E ;
Gatti, A ;
Bache, M ;
Lugiato, LA .
PHYSICAL REVIEW A, 2004, 69 (02) :19
[4]   Nonlinear interferometers in quantum optics [J].
Chekhova, M. V. ;
Ou, Z. Y. .
ADVANCES IN OPTICS AND PHOTONICS, 2016, 8 (01) :104-155
[5]   Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine [J].
Cheng, Ji-Xin ;
Xie, X. Sunney .
SCIENCE, 2015, 350 (6264)
[6]   Microfluidics and Raman microscopy: current applications and future challenges [J].
Chrimes, Adam F. ;
Khoshmanesh, Khashayar ;
Stoddart, Paul R. ;
Mitchell, Arnan ;
Kalantar-zadeh, Kourosh .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (13) :5880-5906
[7]  
Dam JS, 2012, NAT PHOTONICS, V6, P788, DOI [10.1038/NPHOTON.2012.231, 10.1038/nphoton.2012.231]
[8]   Near-infrared to visible upconversion imaging using a broadband pump laser [J].
Demur, Romain ;
Garioud, Renaud ;
Grisard, Arnaud ;
Lallier, Eric ;
Leviandier, Luc ;
Morvan, Loic ;
Treps, Nicolas ;
Fabre, Claude .
OPTICS EXPRESS, 2018, 26 (10) :13252-13263
[9]   Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine [J].
Evans, Conor. L. ;
Xie, X. Sunney .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, 2008, 1 (01) :883-909
[10]   Chemically-selective imaging of brain structures with CARS microscopy [J].
Evans, Conor L. ;
Xu, Xiaoyin ;
Kesari, Santosh ;
Xie, X. Sunney ;
Wong, Stephen T. C. ;
Young, Geoffrey S. .
OPTICS EXPRESS, 2007, 15 (19) :12076-12087