Nanoparticle-based biosensing using interfacial electrokinetic transduction

被引:8
作者
Crivellari, Francesca [1 ]
Mavrogiannis, Nicholas [1 ]
Gagnon, Zachary [1 ]
机构
[1] Johns Hopkins Univ, Dept Chem & Biomol Engn, 221 Maryland Hall,3400 North Charles St, Baltimore, MD 21218 USA
基金
美国国家科学基金会;
关键词
Biosensing; Electrokinetics; Microfluidics; Dielectrophoresis; Nanoparticles; GOLD NANOPARTICLES; LIQUID INTERFACES; IMMUNOGLOBULIN-G; DNA; PROTEIN; LABEL; MOLECULE; KINETICS; BINDING; ASSAY;
D O I
10.1016/j.snb.2016.09.029
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We present a novel label-free electrokinetic method for detecting biomolecular binding on nanoparticles suspended in the vicinity of a laminar microfluidic interface. The sensor is based on the deflection of the liquid interface in an external AC electric field. Biomolecular binding on particles is shown to increase the interfacial electrical conductivity of the suspending electrolyte, which is sensitively transduced as a change in electrokinetic interfacial deflection. Using this approach, we detect the binding of biotin on streptavidin-functionalized nanoparticles at concentrations as low as 500 aM and perform detection of human IgG at clinically relevant concentrations (1.25-12 mg/mL) without labels. The interface response is only influenced by specific binding on nanoparticle binding sites and decreases when the particle concentration of reactive particles is reduced. Furthermore, we show that control experiments with both non-reactive particles and lack of a specific target analyte do not produce interfacial deflection. This work provides a promising method for quantifying bead-based binding kinetics for sensitive and specific biosensing in solution without labels. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:926 / 933
页数:8
相关论文
共 32 条
[1]  
AKERSTROM B, 1986, J BIOL CHEM, V261, P240
[2]  
Arnold W. M., 1993, Biochemical Society Transactions, V21, p475S
[3]   Measurements on the diffusion coefficient of colloidal particles by Taylor-Aris dispersion [J].
Belongia, BM ;
Baygents, JC .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1997, 195 (01) :19-31
[4]   Steric crowding effects on target detection in an affinity biosensor [J].
Bonanno, Lisa M. ;
DeLouise, Lisa A. .
LANGMUIR, 2007, 23 (10) :5817-5823
[5]  
Bunimovich Y. L., J AM CHEM SOC, V128
[6]   Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label [J].
Cai, H ;
Wang, YQ ;
He, PG ;
Fang, YH .
ANALYTICA CHIMICA ACTA, 2002, 469 (02) :165-172
[7]   High-sensitivity miniaturized immunoassays for tumor necrosis factor a using microfluidic systems [J].
Cesaro-Tadic, S ;
Dernick, G ;
Juncker, D ;
Buurman, G ;
Kropshofer, H ;
Michel, B ;
Fattinger, C ;
Delamarche, E .
LAB ON A CHIP, 2004, 4 (06) :563-569
[8]  
De M, 2009, NAT CHEM, V1, P461, DOI [10.1038/NCHEM.334, 10.1038/nchem.334]
[9]   Maxwell-Wagner Polarization and Frequency-Dependent Injection at Aqueous Electrical Interfaces [J].
Desmond, Mitchell ;
Mavrogiannis, Nicholas ;
Gagnon, Zachary .
PHYSICAL REVIEW LETTERS, 2012, 109 (18)
[10]   A bio-barcode assay for on-chip attomolar-sensitivity protein detection [J].
Goluch, Edgar D. ;
Nam, Jwa-Min ;
Georganopoulou, Dimitra G. ;
Chiesl, Thomas N. ;
Shaikh, Kashan A. ;
Ryu, Kee S. ;
Barron, Annelise E. ;
Mirkin, Chad A. ;
Liu, Chang .
LAB ON A CHIP, 2006, 6 (10) :1293-1299