A two-step approach for feature selection and classifier ensemble construction in computer-aided diagnosis
被引:14
|
作者:
Lee, Michael C.
论文数: 0引用数: 0
h-index: 0
机构:
Philips Res North Amer, Briarcliff Manor, NY USAPhilips Res North Amer, Briarcliff Manor, NY USA
Lee, Michael C.
[1
]
Boroczky, Lilla
论文数: 0引用数: 0
h-index: 0
机构:
Philips Res North Amer, Briarcliff Manor, NY USAPhilips Res North Amer, Briarcliff Manor, NY USA
Boroczky, Lilla
[1
]
Sungur-Stasik, Kivilcim
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Coll Phys & Surg, New York, NY 10027 USAPhilips Res North Amer, Briarcliff Manor, NY USA
Sungur-Stasik, Kivilcim
[2
]
Cann, Aaron D.
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Coll Phys & Surg, New York, NY 10027 USAPhilips Res North Amer, Briarcliff Manor, NY USA
Cann, Aaron D.
[2
]
Borczuk, Alain C.
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Coll Phys & Surg, New York, NY 10027 USAPhilips Res North Amer, Briarcliff Manor, NY USA
Borczuk, Alain C.
[2
]
Kawut, Steven M.
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Coll Phys & Surg, New York, NY 10027 USAPhilips Res North Amer, Briarcliff Manor, NY USA
Kawut, Steven M.
[2
]
Powell, Charles A.
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Coll Phys & Surg, New York, NY 10027 USAPhilips Res North Amer, Briarcliff Manor, NY USA
Powell, Charles A.
[2
]
机构:
[1] Philips Res North Amer, Briarcliff Manor, NY USA
[2] Columbia Univ, Coll Phys & Surg, New York, NY 10027 USA
来源:
PROCEEDINGS OF THE 21ST IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS
|
2008年
关键词:
D O I:
10.1109/CBMS.2008.68
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Accurate classification methods are critical in computer-aided diagnosis and other clinical decision support systems. Previous research has studied methods for combining genetic algorithms for feature selection with ensemble classifier systems in an effort to increase classification accuracy. We propose a two-step approach that first uses genetic algorithms to reduce the number of features used to characterize the data, then applies the random subspace method on the remaining features to create a set of diverse but high performing classifiers. These classifiers are combined using ensemble learning techniques to yield a final classification. We demonstrate this approach for computer-aided diagnosis of solitary pulmonary nodules from CT scans, in which the proposed method outperforms several previously described methods.
机构:
Korea Adv Inst Sci & Technol, Dept Elect Engn, Image & Video Syst Lab, Daejeon 305701, South KoreaKorea Adv Inst Sci & Technol, Dept Elect Engn, Image & Video Syst Lab, Daejeon 305701, South Korea
Choi, Jae Young
Kim, Dae Hoe
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Elect Engn, Image & Video Syst Lab, Daejeon 305701, South KoreaKorea Adv Inst Sci & Technol, Dept Elect Engn, Image & Video Syst Lab, Daejeon 305701, South Korea
Kim, Dae Hoe
Plataniotis, Konstantinos N.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toronto, Dept Elect & Comp Engn, Knowledge Media Design Inst, Toronto, ON M5S 3GA, CanadaKorea Adv Inst Sci & Technol, Dept Elect Engn, Image & Video Syst Lab, Daejeon 305701, South Korea
Plataniotis, Konstantinos N.
Ro, Yong Man
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Elect Engn, Image & Video Syst Lab, Daejeon 305701, South KoreaKorea Adv Inst Sci & Technol, Dept Elect Engn, Image & Video Syst Lab, Daejeon 305701, South Korea
机构:
Univ Paris 04, Univ Technol Compiegne, CNRS, UMR Heudiasyc 7253, F-75230 Paris 05, France
Univ Rouen, QuantIF EA LITIS 4108, F-76183 Rouen, FranceUniv Paris 04, Univ Technol Compiegne, CNRS, UMR Heudiasyc 7253, F-75230 Paris 05, France
Lian, Chunfeng
Ruan, Su
论文数: 0引用数: 0
h-index: 0
机构:
Univ Rouen, QuantIF EA LITIS 4108, F-76183 Rouen, FranceUniv Paris 04, Univ Technol Compiegne, CNRS, UMR Heudiasyc 7253, F-75230 Paris 05, France
Ruan, Su
Denoeux, Thierry
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 04, Univ Technol Compiegne, CNRS, UMR Heudiasyc 7253, F-75230 Paris 05, FranceUniv Paris 04, Univ Technol Compiegne, CNRS, UMR Heudiasyc 7253, F-75230 Paris 05, France