The Milstein Scheme for Stochastic Delay Differential Equations Without Using Anticipative Calculus

被引:40
作者
Kloeden, P. E. [1 ]
Shardlow, T. [2 ]
机构
[1] Goethe Univ Frankfurt, Inst Math, D-60325 Frankfurt, Germany
[2] Univ Manchester, Sch Math, Manchester, Lancs, England
关键词
Delay equations; Milstein method; SDDE; Stochastic differential equations; Strong convergence; Taylor expansions;
D O I
10.1080/07362994.2012.628907
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Milstein scheme is the simplest nontrivial numerical scheme for stochastic differential equations with a strong order of convergence one. The scheme has been extended to the stochastic delay differential equations but the analysis of the convergence is technically complicated due to anticipative integrals in the remainder terms. This article employs an elementary method to derive the Milstein scheme and its first order strong rate of convergence for stochastic delay differential equations.
引用
收藏
页码:181 / 202
页数:22
相关论文
共 15 条
[1]  
Ambrosetti A, 1993, CAMBRIDGE STUDIES AD, V34
[2]   A delayed Black and Scholes formula [J].
Arriojas, Mercedes ;
Hu, Yaozhong ;
Mohammed, Salah-Eldin ;
Pap, Gyula .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2007, 25 (02) :471-492
[3]   WEAK CONVERGENCE OF THE EULER SCHEME FOR STOCHASTIC DIFFERENTIAL DELAY EQUATIONS [J].
Buckwar, Evelyn ;
Kuske, Rachel ;
Mohammed, Salah-Eldin ;
Shardlow, Tony .
LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2008, 11 :60-99
[4]  
Hu YZ, 2004, ANN PROBAB, V32, P265
[5]   An analytic approximate method for solving stochastic integrodifferential equations [J].
Jankovic, Svetlana ;
Ilic, Dejan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 320 (01) :230-245
[6]   TAYLOR EXPANSIONS OF SOLUTIONS OF STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH ADDITIVE NOISE [J].
Jentzen, Arnulf ;
Kloeden, Peter .
ANNALS OF PROBABILITY, 2010, 38 (02) :532-569
[7]   Pathwise Taylor schemes for random ordinary differential equations [J].
Jentzen, Arnulf ;
Kloeden, Peter E. .
BIT NUMERICAL MATHEMATICS, 2009, 49 (01) :113-140
[8]  
Kloeden P. E., 1992, NUMERICAL SOLUTION S
[9]   Pathwise convergent higher order numerical schemes for random ordinary differential equations [J].
Kloeden, Peter E. ;
Jentzen, Arnulf .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2087) :2929-2944
[10]  
Mao X., 2007, Stochastic Differential Equations and Applications, V2nd, DOI DOI 10.1533/9780857099402