Reconstruction of Kelvin probe force microscopy image with experimentally calibrated point spread function

被引:2
作者
Lan, Fei [1 ]
Jiang, Minlin [1 ]
Tao, Quan [1 ]
Wei, Fanan [2 ]
Li, Guangyong [1 ]
机构
[1] Univ Pittsburgh, Dept Elect & Comp Engn, Pittsburgh, PA 15261 USA
[2] Fuzhou Univ, Sch Machine Engn & Automat, Fujian 350116, Peoples R China
基金
美国国家科学基金会;
关键词
AUGMENTED LAGRANGIAN METHOD; POTENTIAL DISTRIBUTION; MINIMIZATION; ALGORITHM;
D O I
10.1063/1.4978282
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A Kelvin probe force microscopy (KPFM) image is sometimes difficult to interpret because it is a blurred representation of the true surface potential (SP) distribution of the materials under test. The reason for the blurring is that KPFM relies on the detection of electrostatic force, which is a long-range force compared to other surface forces. Usually, KPFM imaging model is described as the convolution of the true SP distribution of the sample with an intrinsic point spread function (PSF) of the measurement system. To restore the true SP signals from the blurred ones, the intrinsic PSF of the system is needed. In thiswork, we present away to experimentally calibrate the PSF of theKPFMsystem. Taking the actual probe shape and experimental parameters into consideration, this calibration method leads to a more accurate PSF than the ones obtained from simulations. Moreover, a nonlinear reconstruction algorithm based on total variation (TV) regularization is applied to KPFM measurement to reverse the blurring caused by PSF during KPFM imaging process; as a result, noises are reduced and the fidelity of SP signals is improved. Published by AIP Publishing.
引用
收藏
页数:7
相关论文
共 28 条
  • [1] Topography and work function measurements of thin MgO(001) films on Ag(001) by nc-AFM and KPFM
    Bieletzki, M.
    Hynninen, T.
    Soini, T. M.
    Pivetta, M.
    Henry, C. R.
    Foster, A. S.
    Esch, F.
    Barth, C.
    Heiz, U.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (13) : 3203 - 3209
  • [2] On the deconvolution of Kelvin probe force microscopy data
    Bluemel, A.
    Plank, H.
    Klug, A.
    Fisslthaler, E.
    Sezen, M.
    Grogger, W.
    List, E. J. W.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (05)
  • [3] An augmented Lagrangian approach to the numerical solution of a non-smooth eigenvalue problem
    Caboussat, A.
    Glowinski, R.
    Pons, V.
    [J]. JOURNAL OF NUMERICAL MATHEMATICS, 2009, 17 (01) : 3 - 26
  • [4] An Augmented Lagrangian Method for Total Variation Video Restoration
    Chan, Stanley H.
    Khoshabeh, Ramsin
    Gibson, Kristofor B.
    Gill, Philip E.
    Nguyen, Truong Q.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (11) : 3097 - 3111
  • [5] Reconstruction of surface potential from Kelvin probe force microscopy images
    Cohen, G.
    Halpern, E.
    Nanayakkara, S. U.
    Luther, J. M.
    Held, C.
    Bennewitz, R.
    Boag, A.
    Rosenwaks, Y.
    [J]. NANOTECHNOLOGY, 2013, 24 (29)
  • [6] Quantitative 3D-KPFM imaging with simultaneous electrostatic force and force gradient detection
    Collins, L.
    Okatan, M. B.
    Li, Q.
    Kravenchenko, I. I.
    Lavrik, N. V.
    Kalinin, S. V.
    Rodriguez, B. J.
    Jesse, S.
    [J]. NANOTECHNOLOGY, 2015, 26 (17) : 1 - 11
  • [7] Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution
    Dey, N
    Blanc-Feraud, L
    Zimmer, C
    Roux, P
    Kam, Z
    Olivo-Marin, JC
    Zerubia, J
    [J]. MICROSCOPY RESEARCH AND TECHNIQUE, 2006, 69 (04) : 260 - 266
  • [8] The role of the cantilever in Kelvin probe force microscopy measurements
    Elias, George
    Glatzel, Thilo
    Meyer, Ernst
    Schwarzman, Alex
    Boag, Amir
    Rosenwaks, Yossi
    [J]. BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2011, 2 : 252 - 260
  • [9] Potential distribution of Cu(In,Ga)(S,Se)2-solar cell cross-sections measured by Kelvin probe force microscopy
    Glatzel, T
    Steigert, H
    Sadewasser, S
    Klenk, R
    Lux-Steiner, MC
    [J]. THIN SOLID FILMS, 2005, 480 : 177 - 182
  • [10] Glatzel T., 2007, SCANNING PROBE MICRO, V2, P113