Automatic sleep stages classification based on iterative filtering of electroencephalogram signals

被引:145
作者
Sharma, Rajeev [1 ]
Pachori, Ram Bilas [1 ]
Upadhyay, Abhay [1 ]
机构
[1] Indian Inst Technol Indore, Discipline Elect Engn, Indore 453552, Madhya Pradesh, India
关键词
Sleep stages; Electroencephalogram signal; Iterative filtering; Teager energy operator; Classifiers; EMPIRICAL MODE DECOMPOSITION; TIME-FREQUENCY ANALYSIS; EEG SIGNALS; POINCARE PLOT; CHANNEL; SYSTEM; CLASSIFIERS; ALGORITHM; AGREEMENT; GEOMETRY;
D O I
10.1007/s00521-017-2919-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Computer-aided sleep monitoring system can effectively reduce the burden of experts in analyzing the large volume of electroencephalogram (EEG) recordings corresponding to sleep stages. In this paper, a new technique for automated classification of sleep stages based on iterative filtering of EEG signals is presented. In order to perform sleep stages classification, the EEG signals are decomposed using iterative filtering method. The modes obtained from iterative filtering of EEG signal can be considered as amplitude-modulated and frequency-modulated (AM-FM) components. The discrete energy separation algorithm (DESA) is applied to the modes to determine amplitude envelope and instantaneous frequency functions. The extracted amplitude envelope and instantaneous frequency functions have been used to compute Poincare' plot descriptors and statistical measures. The Poincare' plot descriptors and statistical measures are applied as input features for different classifiers in order to classify sleep stages. The classifiers namely, naive Bayes, k-nearest neighbor, multilayer perceptron, C4.5 decision tree, and random forest are applied in order to classify the EEG epochs corresponding to various sleep stages. The experimental study has been performed on online available Sleep-EDF database for two-class to six-class classification of sleep stages based on EEG signals. The two-class to six-class classification problems are formulated by taking different combinations of EEG signals corresponding to various sleep stages. The comparison of the results is presented for different multi-class classification problems with the other recently proposed methods. The results show that the proposed method has provided better tenfold crossvalidation classification accuracy than other existing methods.
引用
收藏
页码:2959 / 2978
页数:20
相关论文
共 73 条
[1]   Sleep Stage Classification Using EEG Signal Analysis: A Comprehensive Survey and New Investigation [J].
Aboalayon, Khald Ali I. ;
Faezipour, Miad ;
Almuhammadi, Wafaa S. ;
Moslehpour, Saeid .
ENTROPY, 2016, 18 (09)
[2]   Non-linear analysis of EEG signals at various sleep stages [J].
Acharya, R ;
Faust, O ;
Kannathal, N ;
Chua, T ;
Laxminarayan, S .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2005, 80 (01) :37-45
[3]   Nonlinear Dynamics Measures for Automated EEG-Based Sleep Stage Detection [J].
Acharya, U. Rajendra ;
Bhat, Shreya ;
Faust, Oliver ;
Adeli, Hojjat ;
Chua, Eric Chern-Pin ;
Lim, Wei Jie Eugene ;
Koh, Joel En Wei .
EUROPEAN NEUROLOGY, 2015, 74 (5-6) :268-287
[4]   A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy [J].
Adeli, Hojjat ;
Ghosh-Dastidar, Samanwoy ;
Dadmehr, Nahid .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (02) :205-211
[5]   Computer-assisted sleep staging [J].
Agarwal, R ;
Gotman, J .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2001, 48 (12) :1412-1423
[6]  
Agnew H W Jr, 1966, Psychophysiology, V2, P263, DOI 10.1111/j.1469-8986.1966.tb02650.x
[7]   INSTANCE-BASED LEARNING ALGORITHMS [J].
AHA, DW ;
KIBLER, D ;
ALBERT, MK .
MACHINE LEARNING, 1991, 6 (01) :37-66
[8]   Performance analysis of support vector machines classifiers in breast cancer mammography recognition [J].
Azar, Ahmad Taher ;
El-Said, Shaimaa Ahmed .
NEURAL COMPUTING & APPLICATIONS, 2014, 24 (05) :1163-1177
[9]   Automatic classification of sleep stages based on the time-frequency image of EEG signals [J].
Bajaj, Varun ;
Pachori, Ram Bilas .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2013, 112 (03) :320-328
[10]   Automatic analysis of single-channel sleep EEG:: Validation in healthy individuals [J].
Berthomier, Christian ;
Drouot, Xavier ;
Herman-Stoieca, Maria ;
Berthomier, Pierre ;
Prado, Jacques ;
Bokar-Thire, Djibril ;
Benoit, Odile ;
Mattout, Jeremie ;
d'Ortho, Marie-Pia .
SLEEP, 2007, 30 (11) :1587-1595