Introduction to representations of the canonical commutation and anticommutation relations

被引:31
作者
Derezinski, J. [1 ]
机构
[1] Univ Warsaw, Dept Math Methods Phys, PL-00682 Warsaw, Poland
来源
LARGE COULOMB SYSTEMS | 2006年 / 695卷
关键词
D O I
10.1007/3-540-32579-4_3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Since the early days of quantum mechanics it has been noted that the position operator x and the momentum operator D := -i∇ satisfy the following commutation relation. © 2006 Springer.
引用
收藏
页码:63 / 143
页数:81
相关论文
共 75 条
[11]  
Araki H., 1973, Publ. Res. Inst. Math. Sci. Kyoto, V9, P165
[12]  
Araki H., 1970, PUBL RIMS KYOTO U, V6, P385, DOI [10.2977/prims/1195193913, DOI 10.2977/PRIMS/1195193913]
[13]   Return to equilibrium [J].
Bach, V ;
Fröhlich, J ;
Sigal, IM .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (06) :3985-4060
[14]  
BAEZ JC, 1991, INTRO ALGEBRAIC COSN
[15]  
BOGOLUBOV NN, 1947, ZH EXP TECKN FIZ, V17, P23
[16]  
BRATTELLI O, 1996, OPERATOR ANAL QUANTU, V2
[17]  
Brattelli O., 1987, OPERATOR ALGEBRAS QU, V1
[18]   Spinors in n dimensions [J].
Brauer, R ;
Weyl, H .
AMERICAN JOURNAL OF MATHEMATICS, 1935, 57 :425-449
[19]  
CARTAN E, 1938, THEORIE SPINEURS ACT
[20]  
Clifford W. K., 1878, Am. J. Math, V1, P350, DOI [DOI 10.2307/2369379, 10.2307/2369379]