Surface-Tuned Co3O4 Nanoparticles Dispersed on Nitrogen-Doped Graphene as an Efficient Cathode Electrocatalyst for Mechanical Rechargeable Zinc-Air Battery Application

被引:140
作者
Singh, Santosh K. [1 ,2 ]
Dhavale, Vishal M. [1 ,2 ]
Kurungot, Sreekumar [1 ,2 ]
机构
[1] CSIR, Natl Chem Lab, Phys & Mat Chem Div, Dr Homi Bhabha Rd, Pune 411008, Maharashtra, India
[2] Acad Sci & Innovat Res, Anusandhan Bhawan, New Delhi 110001, India
关键词
oxygen reduction reaction; surface morphology; mixed facets; electrocatalyst; rechargeable zinc-air battery; OXYGEN REDUCTION REACTION; COBALT OXIDE; ALKALINE-SOLUTIONS; FUEL-CELLS; ZN-AIR; CATALYSTS; PERFORMANCE; EVOLUTION; ENERGY; HYBRID;
D O I
10.1021/acsami.5b04865
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The most vital component of the fuel cells and metal air batteries is the electrocatalyst, which can facilitate the oxygen reduction reaction (ORR) at a significantly reduced overpotential. The present work deals with the development of surface-tuned cobalt oxide (Co3O4) nanoparticles dispersed on nitrogen-doped graphene as a potential ORR electrocatalyst possessing some unique advantages. The thermally reduced nitrogen-doped graphene (NGr) was decorated with three different morphologies of Co3O4 nanoparticles, viz., cubic, blunt edged cubic, and spherical, by using a simple hydrothermal method. We found that the spherical Co3O4 nanoparticle supported NGr catalyst (Co3O4-SP/NGr-24h) has acquired a significant activity makeover to display the ORR activity closely matching with the state-of-the-art Pt supported carbon (PtC) catalyst in alkaline medium. Subsequently, the Co3O4-SP/NGr-24h catalyst has been utilized as the air electrode in a Zn-air battery, which was found to show comparable performance to the system derived from PtC. Co3O4-SP/NGr-24h catalyst has shown several hours of flat discharge profile at the discharge rates of 10, 20, and 50 mA/cm(2) with a specific capacity and energy density of similar to 590 mAh/g(-zn) and,840 Wh/kg(-zn), respectively, in the primary Zn-air battery system. In conjunction, Co3O4-SP/NGr-24h has outperformed as an air electrode in mechanical rechargeable Zn-air battery as well, which has shown consistent flat discharge profile with minimal voltage loss at a discharge rate of 50 mA/cm(2). The present results, thus demonstrate that the proper combination of the tuned morphology of Co3O4 with NGr will be a promising and inexpensive material for efficient and ecofriendly cathodes for Zn-air batteries.
引用
收藏
页码:21138 / 21149
页数:12
相关论文
共 77 条
[1]   Prospects and Limits of Energy Storage in Batteries [J].
Abraham, K. M. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (05) :830-844
[2]   Predictive modeling of electrocatalyst structure based on structure-to-property correlations of X-ray photoelectron spectroscopic and electrochemical measurements [J].
Artyushkova, Kateryna ;
Pylypenko, Svitlana ;
Olson, Tim S. ;
Fulghum, Julia E. ;
Atanassov, Plamen .
LANGMUIR, 2008, 24 (16) :9082-9088
[3]   Tailoring the properties and the reactivity of the spinel cobalt oxide [J].
Bahlawane, Naoufal ;
Ngamou, Patrick Herve Tchoua ;
Vannier, Vincent ;
Kottke, Tilman ;
Heberle, Joachim ;
Kohse-Hoeinghaus, Katharina .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (40) :9224-9232
[4]   Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst [J].
Cao, Ruiguo ;
Thapa, Ranjit ;
Kim, Hyejung ;
Xu, Xiaodong ;
Kim, Min Gyu ;
Li, Qing ;
Park, Noejung ;
Liu, Meilin ;
Cho, Jaephil .
NATURE COMMUNICATIONS, 2013, 4
[5]   Recent Progress in Non-Precious Catalysts for Metal-Air Batteries [J].
Cao, Ruiguo ;
Lee, Jang-Soo ;
Liu, Meilin ;
Cho, Jaephil .
ADVANCED ENERGY MATERIALS, 2012, 2 (07) :816-829
[6]   Highly Active and Durable Core-Corona Structured Bifunctional Catalyst for Rechargeable Metal-Air Battery Application [J].
Chen, Zhu ;
Yu, Aiping ;
Higgins, Drew ;
Li, Hui ;
Wang, Haijiang ;
Chen, Zhongwei .
NANO LETTERS, 2012, 12 (04) :1946-1952
[7]   Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts [J].
Cheng, Fangyi ;
Shen, Jian ;
Peng, Bo ;
Pan, Yuede ;
Tao, Zhanliang ;
Chen, Jun .
NATURE CHEMISTRY, 2011, 3 (01) :79-84
[8]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[9]   Cu-Pt Nanocage with 3-D Electrocatalytic Surface as an Efficient Oxygen Reduction Electrocatalyst for a Primary Zn-Air Battery [J].
Dhavale, Vishal M. ;
Kurungot, Sreekumar .
ACS CATALYSIS, 2015, 5 (03) :1445-1452
[10]   Nitrogen-doped graphene interpenetrated 3D Ni-nanocages: efficient and stable water-to-dioxygen electrocatalysts [J].
Dhavale, Vishal M. ;
Gaikwad, Sachin S. ;
George, Leena ;
Devi, R. Nandini ;
Kurungot, Sreekumar .
NANOSCALE, 2014, 6 (21) :13179-13187