Tilings With n-Dimensional Chairs and Their Applications to Asymmetric Codes

被引:22
作者
Buzaglo, Sarit [1 ]
Etzion, Tuvi [1 ]
机构
[1] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
Asymmetric limited-magnitude errors; lattice; n-dimensional chair; perfect codes; splitting; tiling; write-once memory (WOM) codes; ERRORS; SINGLE; SPACE;
D O I
10.1109/TIT.2012.2226925
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An n-dimensional chair consists of an n-dimensional box from which a smaller n-dimensional box is removed. A tiling of an n-dimensional chair has two nice applications in some memories using asymmetric codes. The first one is in the design of codes that correct asymmetric errors with limited magnitude. The second one is in the design of n cells q-ary write-once memory codes. We show an equivalence between the design of a tiling with an integer lattice and the design of a tiling from a generalization of splitting (or of Sidon sequences). A tiling of an n-dimensional chair can define a perfect code for correcting asymmetric errors with limited magnitude. We present constructions for such tilings and prove cases where perfect codes for these type of errors do not exist.
引用
收藏
页码:1573 / 1582
页数:10
相关论文
共 37 条
[1]  
Ahlswede R., 2002, PROC 8 INT WORKSHOP, P6
[2]  
[Anonymous], 1978, The Theory of Error-Correcting Codes
[3]  
[Anonymous], 2004, ELECT J COMBIN
[4]  
Cassuto Y., 2012, P IEEE INT S INF THE, P1396
[5]   Codes for Multi-level Flash memories: Correcting asymmetric limited-magnitude errors [J].
Cassuto, Yuval ;
Schwartz, Moshe ;
Bohossian, Vasken ;
Bruck, Jehoshua .
2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, :1176-1180
[6]   Codes for Asymmetric Limited-Magnitude Errors With Application to Multilevel Flash Memories [J].
Cassuto, Yuval ;
Schwartz, Moshe ;
Bohossian, Vasken ;
Bruck, Jehoshua .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) :1582-1595
[7]   LINEAR BINARY CODE FOR WRITE-ONCE MEMORIES [J].
COHEN, GD ;
GODLEWSKI, P ;
MERKX, F .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1986, 32 (05) :697-700
[8]  
Dolecek L., 2010, P WORKSH APPL COMM T, P1936
[9]   Optimal, Systematic, q-Ary Codes Correcting All Asymmetric and Symmetric Errors of Limited Magnitude [J].
Elarief, Noha ;
Bose, Bella .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (03) :979-983
[10]  
FIAT A, 1984, IEEE T INFORM THEORY, V30, P471