Bayesian Inference for OPC Modeling

被引:1
作者
Burbine, Andrew [1 ,2 ]
Sturtevant, John [2 ]
Fryer, David [2 ]
Smith, Bruce W. [1 ]
机构
[1] Rochester Inst Technol, 82 Lomb Mem Dr, Rochester, NY 14623 USA
[2] Mentor Graph Corp, 8005 SW Boeckman Rd, Wilsonville, OR 97070 USA
来源
OPTICAL MICROLITHOGRAPHY XXIX | 2016年 / 9780卷
关键词
OPC modeling; Bayesian inference; uncertainty;
D O I
10.1117/12.2219707
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The use of optical proximity correction (OPC) demands increasingly accurate models of the photolithographic process. Model building and inference techniques in the data science community have seen great strides in the past two decades which make better use of available information. This paper aims to demonstrate the predictive power of Bayesian inference as a method for parameter selection in lithographic models by quantifying the uncertainty associated with model inputs and wafer data. Specifically, the method combines the model builder's prior information about each modelling assumption with the maximization of each observation's likelihood as a Student's t-distributed random variable. Through the use of a Markov chain Monte Carlo (MCMC) algorithm, a model's parameter space is explored to find the most credible parameter values. During parameter exploration, the parameters' posterior distributions are generated by applying Bayes' rule, using a likelihood function and the a priori knowledge supplied. The MCMC algorithm used, an affine invariant ensemble sampler (AIES), is implemented by initializing many walkers which semi-independently explore the space. The convergence of these walkers to global maxima of the likelihood volume determine the parameter values' highest density intervals (HDI) to reveal champion models. We show that this method of parameter selection provides insights into the data that traditional methods do not and outline continued experiments to vet the method.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Bayesian inference and wind field statistical modeling applied to multiple source estimation
    Albani, Roseane A. S.
    Albani, Vinicius V. L.
    Gomes, Luiz E. S.
    Migon, Helio S.
    Neto, Antonio J. Silva
    ENVIRONMENTAL POLLUTION, 2023, 321
  • [42] Efficient Bayesian inference for finite element model updating with surrogate modeling techniques
    Qiang Li
    Xiuli Du
    Pinghe Ni
    Qiang Han
    Kun Xu
    Zhishen Yuan
    Journal of Civil Structural Health Monitoring, 2024, 14 : 997 - 1015
  • [43] Modeling and Predicting Trust Dynamics in Human–Robot Teaming: A Bayesian Inference Approach
    Yaohui Guo
    X. Jessie Yang
    International Journal of Social Robotics, 2021, 13 : 1899 - 1909
  • [44] Modeling layout design for multiple-view visualization via Bayesian inference
    Lingdan Shao
    Zhe Chu
    Xi Chen
    Yanna Lin
    Wei Zeng
    Journal of Visualization, 2021, 24 : 1237 - 1252
  • [45] Trial-by-trial modeling of electrophysiological signals during inverse Bayesian inference
    Antonio Kolossa
    Bruno Kopp
    Tim Fingscheidt
    BMC Neuroscience, 15 (Suppl 1)
  • [46] Meta-Kriging: Scalable Bayesian Modeling and Inference for Massive Spatial Datasets
    Guhaniyogi, Rajarshi
    Banerjee, Sudipto
    TECHNOMETRICS, 2018, 60 (04) : 430 - 444
  • [47] A Stochastic Collocation Approach to Bayesian Inference in Inverse Problems
    Marzouk, Youssef
    Xiu, Dongbin
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2009, 6 (04) : 826 - 847
  • [48] Bayesian Inference of Network Structure From Information Cascades
    Gray, Caitlin
    Mitchell, Lewis
    Roughan, Matthew
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2020, 6 : 371 - 381
  • [49] A Multiscale Strategy for Bayesian Inference Using Transport Maps
    Parno, Matthew
    Moselhy, Tarek
    Marzouk, Youssef
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01): : 1160 - 1190
  • [50] Bayesian Inference in Action in EMC-Fundamentals and Applications
    Carobbi, Carlo F. M.
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2017, 59 (04) : 1114 - 1124