Bayesian Inference for OPC Modeling

被引:1
作者
Burbine, Andrew [1 ,2 ]
Sturtevant, John [2 ]
Fryer, David [2 ]
Smith, Bruce W. [1 ]
机构
[1] Rochester Inst Technol, 82 Lomb Mem Dr, Rochester, NY 14623 USA
[2] Mentor Graph Corp, 8005 SW Boeckman Rd, Wilsonville, OR 97070 USA
来源
OPTICAL MICROLITHOGRAPHY XXIX | 2016年 / 9780卷
关键词
OPC modeling; Bayesian inference; uncertainty;
D O I
10.1117/12.2219707
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The use of optical proximity correction (OPC) demands increasingly accurate models of the photolithographic process. Model building and inference techniques in the data science community have seen great strides in the past two decades which make better use of available information. This paper aims to demonstrate the predictive power of Bayesian inference as a method for parameter selection in lithographic models by quantifying the uncertainty associated with model inputs and wafer data. Specifically, the method combines the model builder's prior information about each modelling assumption with the maximization of each observation's likelihood as a Student's t-distributed random variable. Through the use of a Markov chain Monte Carlo (MCMC) algorithm, a model's parameter space is explored to find the most credible parameter values. During parameter exploration, the parameters' posterior distributions are generated by applying Bayes' rule, using a likelihood function and the a priori knowledge supplied. The MCMC algorithm used, an affine invariant ensemble sampler (AIES), is implemented by initializing many walkers which semi-independently explore the space. The convergence of these walkers to global maxima of the likelihood volume determine the parameter values' highest density intervals (HDI) to reveal champion models. We show that this method of parameter selection provides insights into the data that traditional methods do not and outline continued experiments to vet the method.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] The GUM, Bayesian inference and the observation and measurement equations
    Forbes, A. B.
    Sousa, J. A.
    MEASUREMENT, 2011, 44 (08) : 1422 - 1435
  • [32] Emotion dynamics as hierarchical Bayesian inference in time
    Majumdar, Gargi
    Yazin, Fahd
    Banerjee, Arpan
    Roy, Dipanjan
    CEREBRAL CORTEX, 2023, 33 (07) : 3750 - 3772
  • [33] Bayesian inference for variability discrimination on partial sameness
    Chen, Zhicheng
    Liu, Xinsheng
    NEUROCOMPUTING, 2019, 359 : 163 - 172
  • [34] On the Brittleness of Bayesian Inference
    Owhadi, Houman
    Scovel, Clint
    Sullivan, Tim
    SIAM REVIEW, 2015, 57 (04) : 566 - 582
  • [35] BAYESIAN INFERENCE OF HETEROGENEOUS VISCOPLASTIC MATERIAL PARAMETERS
    Janouchova, Eliska
    Kucerova, Anna
    9TH ANNUAL CONFERENCE NANO & MACRO MECHANICS 2018, 2018, 15 : 41 - 45
  • [36] Fuzzy Bayesian Inference
    Viertl, Reinhard
    SOFT METHODS FOR HANDLING VARIABILITY AND IMPRECISION, 2008, 48 : 10 - 15
  • [37] Bayesian inference in ecology
    Ellison, AM
    ECOLOGY LETTERS, 2004, 7 (06) : 509 - 520
  • [38] Bayesian spectral likelihood for hydrological parameter inference
    Schaefli, Bettina
    Kavetski, Dmitri
    WATER RESOURCES RESEARCH, 2017, 53 (08) : 6857 - 6884
  • [39] Modeling layout design for multiple-view visualization via Bayesian inference
    Shao, Lingdan
    Chu, Zhe
    Chen, Xi
    Lin, Yanna
    Zeng, Wei
    JOURNAL OF VISUALIZATION, 2021, 24 (06) : 1237 - 1252
  • [40] Bayesian inference modeling to rank response technologies in arctic marine oil spills
    Das, Tanmoy
    Goerlandt, Floris
    MARINE POLLUTION BULLETIN, 2022, 185