On stabilisability of nonlinear systems on time scales

被引:32
作者
Bartosiewicz, Zbigniew [1 ]
Piotrowska, Ewa [1 ]
机构
[1] Bialystok Tech Univ, Fac Comp Sci, PL-15351 Wiejska, Biaiystok, Poland
关键词
control system; stabilisability; uniform exponential stability; time scale; EXPONENTIAL STABILITY; DYNAMIC EQUATIONS; STABILIZATION;
D O I
10.1080/00207179.2012.721563
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, stabilisability of nonlinear finite-dimensional control systems on arbitrary time scales is studied. The classical results on stabilisation of nonlinear continuous-time and discrete-time systems are extended to systems on arbitrary time scales with bounded graininess function. It is shown that uniform exponential stability of the linear approximation of a nonlinear system implies uniform exponential stability of the nonlinear system. Then this result is used to show a similar implication for uniform exponential stabilisability.
引用
收藏
页码:139 / 145
页数:7
相关论文
共 24 条
[11]  
Davis J.M., 2010, 42 S E S SYST THEOR
[12]  
Doan T.S., 2009, Nonlinear Dynamics and Systems Theory, V9, P37
[13]   On the exponential stability of dynamic equations on time scales [J].
Du, Nguyen Huu ;
Tien, Le Huy .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 331 (02) :1159-1174
[14]   Integration on time scales [J].
Guseinov, GS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 285 (01) :107-127
[15]  
Jackson B.J., 2009, ARXIV09103034V1MATHO
[16]   CONTROLLABILITY AND STABILITY [J].
JURDJEVIC, V ;
QUINN, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 28 (03) :381-389
[17]   Exponential stability of dynamic equations on time scales [J].
Peterson, Allan C. ;
Raffoul, Youssef N. .
ADVANCES IN DIFFERENCE EQUATIONS, 2005, 2005 (02) :133-144
[18]  
Pötzsche C, 2003, DISCRETE CONT DYN S, V9, P1223
[19]  
Sontag E, 1990, MATH CONTROL THEORY
[20]   Brockett's stabilization condition under state constraints [J].
Stem, RJ .
SYSTEMS & CONTROL LETTERS, 2002, 47 (04) :335-341