Structure-based prediction of protein-protein interactions on a genome-wide scale

被引:512
|
作者
Zhang, Qiangfeng Cliff [1 ,2 ,3 ]
Petrey, Donald [1 ,2 ,3 ]
Deng, Lei [1 ,3 ,4 ]
Qiang, Li [5 ]
Shi, Yu [6 ]
Thu, Chan Aye [1 ]
Bisikirska, Brygida [3 ]
Lefebvre, Celine [3 ,7 ]
Accili, Domenico [5 ]
Hunter, Tony [6 ]
Maniatis, Tom [1 ]
Califano, Andrea [1 ,3 ,7 ,8 ]
Honig, Barry [1 ,2 ,3 ]
机构
[1] Columbia Univ, Dept Biochem & Mol Biophys, New York, NY 10032 USA
[2] Columbia Univ, Howard Hughes Med Inst, New York, NY 10032 USA
[3] Columbia Univ, Columbia Initiat Syst Biol, Ctr Computat Biol & Bioinformat, New York, NY 10032 USA
[4] Tongji Univ, Dept Comp Sci & Technol, Shanghai 201804, Peoples R China
[5] Columbia Univ, Coll Phys & Surg, Dept Med, Naomi Berrie Diabet Ctr, New York, NY 10032 USA
[6] Salk Inst Biol Studies, Mol & Cell Biol Lab, La Jolla, CA 92037 USA
[7] Columbia Univ, Inst Canc Genet, New York, NY 10032 USA
[8] Columbia Univ, Dept Biomed Informat, New York, NY 10032 USA
基金
美国国家卫生研究院;
关键词
INTERACTION NETWORKS; DATABASE; SEQUENCES; CONTEXT;
D O I
10.1038/nature11503
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The genome-wide identification of pairs of interacting proteins is an important step in the elucidation of cell regulatory mechanisms(1,2). Much of our present knowledge derives from high-throughput techniques such as the yeast two-hybrid assay and affinity purification(3), as well as from manual curation of experiments on individual systems(4). A variety of computational approaches based, for example, on sequence homology, gene co-expression and phylogenetic profiles, have also been developed for the genome-wide inference of protein-protein interactions (PPIs)(5,6). Yet comparative studies suggest that the development of accurate and complete repertoires of PPIs is still in its early stages(7-9). Here we show that three-dimensional structural information can be used to predict PPIs with an accuracy and coverage that are superior to predictions based on non-structural evidence. Moreover, an algorithm, termed PrePPI, which combines structural information with other functional clues, is comparable in accuracy to high-throughput experiments, yielding over 30,000 high-confidence interactions for yeast and over 300,000 for human. Experimental tests of a number of predictions demonstrate the ability of the PrePPI algorithm to identify unexpected PPIs of considerable biological interest. The surprising effectiveness of three-dimensional structural information can be attributed to the use of homology models combined with the exploitation of both close and remote geometric relationships between proteins.
引用
收藏
页码:556 / +
页数:6
相关论文
共 50 条
  • [41] Structure-based assessment of protein-protein interactions and accessibility of protein IX in adenoviruses with implications for antigen display
    Matteson, Nathaniel L.
    Barry, Michael A.
    Reddy, Vijay S.
    VIROLOGY, 2018, 516 : 102 - 107
  • [42] Efficient prediction of human protein-protein interactions at a global scale
    Andrew Schoenrock
    Bahram Samanfar
    Sylvain Pitre
    Mohsen Hooshyar
    Ke Jin
    Charles A Phillips
    Hui Wang
    Sadhna Phanse
    Katayoun Omidi
    Yuan Gui
    Md Alamgir
    Alex Wong
    Fredrik Barrenäs
    Mohan Babu
    Mikael Benson
    Michael A Langston
    James R Green
    Frank Dehne
    Ashkan Golshani
    BMC Bioinformatics, 15
  • [43] Efficient prediction of human protein-protein interactions at a global scale
    Schoenrock, Andrew
    Samanfar, Bahram
    Pitre, Sylvain
    Hooshyar, Mohsen
    Jin, Ke
    Phillips, Charles A.
    Wang, Hui
    Phanse, Sadhna
    Omidi, Katayoun
    Gui, Yuan
    Alamgir, Md
    Wong, Alex
    Barrenaes, Fredrik
    Babu, Mohan
    Benson, Mikael
    Langston, Michael A.
    Green, James R.
    Dehne, Frank
    Golshani, Ashkan
    BMC BIOINFORMATICS, 2014, 15
  • [44] Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV-2 replication
    Jiang, Yiling
    Tong, Kuijie
    Yao, Roubin
    Zhou, Yuanze
    Lin, Hanwen
    Du, Liubing
    Jin, Yunyun
    Cao, Liu
    Tan, Jingquan
    Zhang, Xing-Ding
    Guo, Deyin
    Pan, Ji-An
    Peng, Xiaoxue
    CELL AND BIOSCIENCE, 2021, 11 (01):
  • [45] Estimating gene regulatory networks and protein-protein interactions of Saccharomyces cerevisiae from multiple genome-wide data
    Nariai, N
    Tamada, Y
    Imoto, S
    Miyano, S
    BIOINFORMATICS, 2005, 21 : 206 - 212
  • [46] Structure-based prediction of host-pathogen protein interactions
    Mariano, Rachelle
    Wuchty, Stefan
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2017, 44 : 119 - 124
  • [47] Prediction of protein-protein interactions: unifying evolution and structure at protein interfaces
    Tuncbag, Nurcan
    Gursoy, Attila
    Keskin, Ozlem
    PHYSICAL BIOLOGY, 2011, 8 (03)
  • [48] Predicting the Effect of Mutations on Protein-Protein Binding Interactions through Structure-Based Interface Profiles
    Brender, Jeffrey R.
    Zhang, Yang
    PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (10)
  • [49] Prediction-based fingerprints of protein-protein interactions
    Porollo, Aleksey
    Meller, Jaroslaw
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2007, 66 (03) : 630 - 645
  • [50] Structure-Based Design of Non-natural Macrocyclic Peptides That Inhibit Protein-Protein Interactions
    Krueger, Dennis M.
    Glas, Adrian
    Bier, David
    Pospiech, Nicole
    Wallraven, Kerstin
    Dietrich, Laura
    Ottmann, Christian
    Koch, Oliver
    Hennig, Sven
    Grossmann, Tom N.
    JOURNAL OF MEDICINAL CHEMISTRY, 2017, 60 (21) : 8982 - 8988