Atomic Level Distributed Strain within Graphene Divacancies from Bond Rotations

被引:19
作者
Chen, Qu [1 ]
Robertson, Alex W. [1 ]
He, Kuang [1 ]
Gong, Chuncheng [1 ]
Yoon, Euijoon [2 ]
Lee, Gun-Do [2 ]
Warner, Jamie H. [1 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151742, South Korea
基金
新加坡国家研究基金会; 英国工程与自然科学研究理事会;
关键词
graphene; defects divacancy; TEM; aberration correction; DFT; ELECTRON-MICROSCOPY; POINT-DEFECTS; NANOSCALE;
D O I
10.1021/acsnano.5b03801
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Vacancy defects play an important role in influencing the properties of graphene, and understanding their detailed atomic structure is crucial for developing accurate models to predict their impact. Divacancies (DVs) are one of the most common defects in graphene and can take three different structural forms through various sequences of bond rotations to minimize the energy. Using aberration-corrected transmission electron microscopy with monochromation of the electron source, we resolve the position of C atoms in graphene and measure the C-C bond lengths within the three DVs, enabling a map of bond strain to be generated. We show that bond rotations reduce the maximum single bond strain reached within a DV and help distribute the strain over a larger number of bonds to minimize the peak magnitude.
引用
收藏
页码:8599 / 8608
页数:10
相关论文
共 31 条
[1]   Graphene-like nano-sheets for surface acoustic wave gas sensor applications [J].
Arsat, R. ;
Breedon, M. ;
Shafiei, M. ;
Spizziri, P. G. ;
Gilje, S. ;
Kaner, R. B. ;
Kalantar-Zadeh, K. ;
Wlodarski, W. .
CHEMICAL PHYSICS LETTERS, 2009, 467 (4-6) :344-347
[2]  
Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
[3]   One-dimensional extended lines of divacancy defects in graphene [J].
Botello-Mendez, A. R. ;
Declerck, X. ;
Terrones, M. ;
Terrones, H. ;
Charlier, J. -C. .
NANOSCALE, 2011, 3 (07) :2868-2872
[4]   DEFECT ENGINEERING Graphene gets designer defects [J].
Carr, Lincoln D. ;
Lusk, Mark T. .
NATURE NANOTECHNOLOGY, 2010, 5 (05) :316-317
[5]   Intrinsic ripples in graphene [J].
Fasolino, A. ;
Los, J. H. ;
Katsnelson, M. I. .
NATURE MATERIALS, 2007, 6 (11) :858-861
[6]   Direct evidence for atomic defects in graphene layers [J].
Hashimoto, A ;
Suenaga, K ;
Gloter, A ;
Urita, K ;
Iijima, S .
NATURE, 2004, 430 (7002) :870-873
[7]   Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy [J].
Hytch, MJ ;
Putaux, JL ;
Pénisson, JM .
NATURE, 2003, 423 (6937) :270-273
[8]  
Kim Y., 2011, PHYS REV B, V84, P1
[9]   Stone-Wales-type transformations in carbon nanostructures driven by electron irradiation [J].
Kotakoski, J. ;
Meyer, J. C. ;
Kurasch, S. ;
Santos-Cottin, D. ;
Kaiser, U. ;
Krasheninnikov, A. V. .
PHYSICAL REVIEW B, 2011, 83 (24)
[10]   From Point Defects in Graphene to Two-Dimensional Amorphous Carbon [J].
Kotakoski, J. ;
Krasheninnikov, A. V. ;
Kaiser, U. ;
Meyer, J. C. .
PHYSICAL REVIEW LETTERS, 2011, 106 (10)