Hybridizing poly(vinylidene fluoride-co-hexafluoropropylene) with Li6.5La3Zr1.5Ta0.5O12 as a lithium-ion electrolyte for solid state lithium metal batteries

被引:133
作者
Lu, Juan [1 ]
Liu, Yanchen [1 ]
Yao, Penghui [1 ]
Ding, Zhiyu [1 ]
Tang, Qiming [1 ]
Wu, Junwei [1 ]
Ye, Ziran [2 ]
Huang, Kevin [3 ]
Liu, Xingjun [1 ]
机构
[1] Harbin Inst Technol Shenzhen, Dept Mat Sci & Engn, Shenzhen Key Lab Adv Mat, Shenzhen 518055, Peoples R China
[2] Zhejiang Univ Technol, Dept Appl Phys, Hangzhou 310014, Zhejiang, Peoples R China
[3] Univ South Carolina, Dept Mech Engn, Columbia, SC 29208 USA
关键词
Solid electrolyte; Polymer; Ceramic; Ionic conductivity; Capacity; GEL POLYMER ELECTROLYTE; PVDF-HFP; ELECTROCHEMICAL PERFORMANCE; CONDUCTIVITY ENHANCEMENT; ENERGY-STORAGE; LI7LA3ZR2O12; FLUORIDE-HEXAFLUOROPROPYLENE); MEMBRANE; FILLERS; SAFE;
D O I
10.1016/j.cej.2019.02.148
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Polymer/ceramic composite solid electrolyte is an appealing solution for the exploitation of flexible solid-state lithium-metal batteries. Here we report a solid-state Li-ion electrolyte composing of poly(vinylidene fluoride-cohexafluoro propylene) (PVDF-HFP) polymer, ceramic powder Li6.5La3Zr1.5Ta0.5O12 (LLZTO) and lithium salt LiTFSI. The composite electrolyte exhibits a high ionic conductivity of 8.80 x 10(-5) S.cm(-1) at room temperature. A coin battery with LiFePO4 cathode is cycled under 0.5 C at room temperature for long cycles, achieving a Coulombic efficiency of 99.6% without virtually capacity loss (1st: 101.4 mAh.g(-1) and 500th: 110.9 mAh.g(-1)). Such excellent performance can be ascribed to the formation of high ionic conductivity by LLZTO active garnet reducing polymer crystallinity. These results show that the developed polymer/ceramic composite has potential to be a high-performance electrolyte for solid-state lithium-metal batteries.
引用
收藏
页码:230 / 238
页数:9
相关论文
共 45 条
[1]   Crystallinity and morphology of PVdF-HFP-based gel electrolytes [J].
Abbrent, S ;
Plestil, J ;
Hlavata, D ;
Lindgren, J ;
Tegenfeldt, J ;
Wendsjö, Å .
POLYMER, 2001, 42 (04) :1407-1416
[2]   Capacity fade mechanisms and side reactions in lithium-ion batteries [J].
Arora, P ;
White, RE ;
Doyle, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (10) :3647-3667
[3]   In situ prepared nano-crystalline TiO2-poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries [J].
Cao, Jiang ;
Wang, Li ;
He, Xiangming ;
Fang, Mou ;
Gao, Jian ;
Li, Jianjun ;
Deng, Lingfeng ;
Chen, Hong ;
Tian, Guangyu ;
Wang, Jianlong ;
Fan, Shoushan .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (19) :5955-5961
[4]   Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries [J].
Chen, Fei ;
Yang, Dunjie ;
Zha, Wenping ;
Zhu, Bodi ;
Zhang, Yanhua ;
Li, Junyang ;
Gu, Yuping ;
Shen, Qiang ;
Zhang, Lianmeng ;
Sadoway, Donald R. .
ELECTROCHIMICA ACTA, 2017, 258 :1106-1114
[5]   "Tai Chi" philosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery [J].
Chen, Nan ;
Xing, Yi ;
Wang, Lili ;
Liu, Fan ;
Li, Li ;
Chen, Renjie ;
Wu, Feng ;
Guo, Shaojun .
NANO ENERGY, 2018, 47 :35-42
[6]   Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte [J].
Cheng, Samson Ho-Sum ;
He, Kang-Qiang ;
Liu, Ying ;
Zha, Jun-Wei ;
Kamruzzaman, Md ;
Ma, Robin Lok-Wang ;
Dang, Zhi-Min ;
Li, Robert K. Y. ;
Chung, C. Y. .
ELECTROCHIMICA ACTA, 2017, 253 :430-438
[7]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[8]   A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles [J].
Choudhury, Snehashis ;
Mangal, Rahul ;
Agrawal, Akanksha ;
Archer, Lynden A. .
NATURE COMMUNICATIONS, 2015, 6
[9]   Toward high lithium conduction in solid polymer and polymer-ceramic batteries [J].
Commarieu, Basile ;
Paolella, Andrea ;
Daigle, Jean-Christophe ;
Zaghib, Karim .
CURRENT OPINION IN ELECTROCHEMISTRY, 2018, 9 :56-63
[10]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935