Extended Varshamov-Gilbert-Sacks Bound for Linear Lee Weight Codes

被引:2
作者
Jain, Sapna [1 ]
Shum, K. P. [2 ]
机构
[1] Univ Delhi, Dept Math, Delhi 110007, India
[2] Yunnan Univ, Inst Math, Kunming 650091, Peoples R China
关键词
Lee weight; linear codes; minimum distance; burst errors; random errors; ERROR-CORRECTING CODES; PARITY CHECKS; ARRAY CODES; BURSTS;
D O I
10.1142/S1005386712000752
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lee weight is more appropriate for some practical situations than the Hamming weight as it takes into account of the magnitude of each digit of the word. In this paper, we obtain a sufficient condition over the number of parity check digits for codes correcting simultaneously random and burst errors with Lee weight consideration. This sufficient condition is an extension of the Varshamov-Gilbert-Sacks bound for codes correcting simultaneously random and burst errors with Lee weight constraint.
引用
收藏
页码:893 / 904
页数:12
相关论文
共 24 条
[1]  
BERLEKAMP E., 2015, Algebraic Coding Theory
[2]  
Berlekamp ElwynR., 1969, COMBINATORIAL MATH I, P298
[3]   BOUNDS ON BURST-ERROR-CORRECTING CODES [J].
CAMPOPIANO, CN .
IRE TRANSACTIONS ON INFORMATION THEORY, 1962, 8 (03) :257-259
[4]  
Cary Huffman., 2003, Fundamentals of Error-Correcting Codes
[5]   A COMPARISON OF SIGNALLING ALPHABETS [J].
GILBERT, EN .
BELL SYSTEM TECHNICAL JOURNAL, 1952, 31 (03) :504-522
[6]   CAPACITY OF A BURST-NOISE CHANNEL [J].
GILBERT, EN .
BELL SYSTEM TECHNICAL JOURNAL, 1960, 39 (05) :1253-1265
[7]   On some perfect codes with respect to Lee metric [J].
Jain, S ;
Nam, KB ;
Lee, KS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 405 :104-120
[8]  
Jain S., 2004, J APPL ALGEBRA DISCR, V2, P153
[9]  
Jain S., 2007, ALGEBRAS GROUPS GEOM, V24, P349
[10]   An algorithmic approach to achieve minimum ρ-distance at least d in linear array codes [J].
Jain, Sapna .
KYUSHU JOURNAL OF MATHEMATICS, 2008, 62 (01) :189-200