The Superconducting Magnet System of the Stellarator Wendelstein 7-X

被引:32
|
作者
Rummel, Thomas [1 ]
Risse, Konrad [1 ]
Ehrke, Gunnar [1 ]
Rummel, Kerstin [1 ]
John, Andre [1 ]
Moennich, Thomas [1 ]
Buscher, Klaus-Peter [1 ]
Fietz, Walter H. [2 ]
Heller, Reinhard [2 ]
Neubauer, Olaf [3 ]
Panin, Anatoly [3 ]
机构
[1] EURATOM, Max Planck Inst Plasmaphys, D-17491 Greifswald, Germany
[2] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany
[3] Forschungszentrum Julich, D-52425 Julich, Germany
关键词
Bus bars; coils; current leads; superconducting magnet system; Wendelstein 7-X (W7-X); DESIGN; COILS; MANUFACTURE;
D O I
10.1109/TPS.2012.2184774
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The stellarator fusion experimental device Wendelstein 7-X (W7-X) is presently under assembly at the Greifswald branch of the Max-Planck-Institut fur Plasmaphysik, Germany. The superconducting magnet system consists of 50 non-planar coils, 20 planar coils, a superconducting bus system, and 14 current leads. It is organized in seven electrical circuits with ten coils, the bus system for the interconnection, and two current leads each. The magnet system is cooled by supercritical helium. It is enclosed in a cryostat with an outer diameter of 16 m formed by the plasma vessel and the outer vessel. There are five different types of nonplanar coils having dimensions of 3.5 x 2.5 x 1.5 meters in maximum and a weight of about 5.5 tons. The two different types of the planar coils are nearly circular coils with a diameter of up to 4.5 m and a weight of about 3 tons. The super-conducting bus bar system connects the coils to each other and provides the connection to the current leads inside the cryostat. All types of coils and the bus system use the W7-X superconductor, a forced flow cable-in-conduit superconductor with 243 copper stabilized NbTi strands with an outer aluminum-alloy jacket. The current leads provide the transfer of the electrical current from the room temperature bus bar system outside the cryostat to the superconducting parts inside the cryostat. Their special feature is the upside-down orientation with the cold end at the top.
引用
收藏
页码:769 / 776
页数:8
相关论文
共 50 条
  • [41] High Temperature Superconductor Current Leads for WENDELSTEIN 7-X and JT-60SA
    Fietz, Walter H.
    Heller, Reinhard
    Kienzler, Andreas
    Lietzow, Ralph
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2009, 19 (03) : 2202 - 2205
  • [42] Equilibrium evaluation for Wendelstein 7-X experiment programs in the first divertor phase
    Andreeva, T.
    Alonso, J. A.
    Bozhenkov, S.
    Brandt, C.
    Endler, M.
    Fuchert, G.
    Geiger, J.
    Grahl, M.
    Klinger, T.
    Krychowiak, M.
    Langenberg, A.
    Lazerson, S.
    Neuner, U.
    Rahbarnia, K.
    Pablant, N.
    Pavone, A.
    Schilling, J.
    Schmitt, J.
    Thomsen, H.
    Turkin, Y.
    FUSION ENGINEERING AND DESIGN, 2019, 146 : 299 - 302
  • [43] Local copper coating of the connectors of the divertor target elements of Wendelstein 7-X
    Junghanns, P.
    Boscary, J.
    Busch, M.
    Mendelevitch, B.
    Stadler, R.
    FUSION ENGINEERING AND DESIGN, 2017, 124 : 483 - 486
  • [44] Thermo-mechanical analysis of Wendelstein 7-X plasma facing components
    Peng, X. B.
    Bykov, V.
    Koeppen, M.
    Ye, M. Y.
    Fellinger, J.
    Peacock, A.
    Smirnow, M.
    Boscary, J.
    Tereshchenko, A.
    Schauer, F.
    FUSION ENGINEERING AND DESIGN, 2013, 88 (9-10) : 1727 - 1730
  • [45] Prototyping phase of the high heat flux scraper element of Wendelstein 7-X
    Boscary, J.
    Greuner, H.
    Ehrke, G.
    Boeswirth, B.
    Wang, Z.
    Clark, E.
    Lumsdaine, A.
    Tretter, J.
    McGinnis, D.
    Lore, J.
    Ekici, K.
    FUSION ENGINEERING AND DESIGN, 2016, 109 : 773 - 776
  • [46] Thermal analysis of Test Divertor Unit Scraper Element for Wendelstein 7-X
    Lumsdaine, Arnold
    Lore, Jeremy
    McGinnis, Dean
    Fellinger, Joris
    Loesser, Douglas
    FUSION ENGINEERING AND DESIGN, 2018, 136 : 964 - 969
  • [47] Status of series production and test of the HTS current leads for Wendelstein 7-X
    Heller, Reinhard
    Buscher, Klaus-Peter
    Drotziger, Sandra
    Fietz, Walter H.
    Kienzler, Andreas
    Lietzow, Ralph
    Moennich, Thomas
    Richter, Thomas
    Rummel, Thomas
    Urbach, Elisabeth
    FUSION ENGINEERING AND DESIGN, 2013, 88 (9-10) : 1482 - 1485
  • [48] Effect of toroidal plasma currents on the Wendelstein 7-X Scrape-Off Layer
    Killer, Carsten
    Gao, Yu
    Perseo, Valeria
    Rudischhauser, Lukas
    Hammond, Kenneth
    Buttenschoen, Birger
    Barbui, Tullio
    Blackwell, Boyd D.
    Brunner, Kai-Jakob
    Drews, Philipp
    Endler, Michael
    Geiger, Joachim
    Grulke, Olaf
    Jakubowski, Marcin
    Klose, Soeren
    Knauer, Jens
    Knieps, Alexander
    Koenig, Ralf
    Li, Yongliang
    Neuner, Ulrich
    Niemann, Holger
    Otte, Matthias
    Schilling, Jonathan
    Sitjes, Aleix Puig
    Rahbarnia, Kian
    Stange, Torsten
    PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (12)
  • [49] Component design in tight areas in the cryostat of Wendelstein 7-X - configuration management and control
    Brakel, R.
    Baylard, Ch.
    Greve, H.
    Hartmann, D. A.
    Herold, F.
    Pilopp, D.
    v. Eeten, P.
    2009 23RD IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, 2009, : 93 - 97
  • [50] The Thomson scattering diagnostic at Wendelstein 7-X and its performance in the first operation phase
    Bozhenkov, S. A.
    Beurskens, M.
    Dal Molin, A.
    Fuchert, G.
    Pasch, E.
    Stoneking, M. R.
    Hirsch, M.
    Hoefel, U.
    Knauer, J.
    Svensson, J.
    Mora, H. Trimino
    Wolf, R. C.
    JOURNAL OF INSTRUMENTATION, 2017, 12