The Superconducting Magnet System of the Stellarator Wendelstein 7-X

被引:32
|
作者
Rummel, Thomas [1 ]
Risse, Konrad [1 ]
Ehrke, Gunnar [1 ]
Rummel, Kerstin [1 ]
John, Andre [1 ]
Moennich, Thomas [1 ]
Buscher, Klaus-Peter [1 ]
Fietz, Walter H. [2 ]
Heller, Reinhard [2 ]
Neubauer, Olaf [3 ]
Panin, Anatoly [3 ]
机构
[1] EURATOM, Max Planck Inst Plasmaphys, D-17491 Greifswald, Germany
[2] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany
[3] Forschungszentrum Julich, D-52425 Julich, Germany
关键词
Bus bars; coils; current leads; superconducting magnet system; Wendelstein 7-X (W7-X); DESIGN; COILS; MANUFACTURE;
D O I
10.1109/TPS.2012.2184774
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The stellarator fusion experimental device Wendelstein 7-X (W7-X) is presently under assembly at the Greifswald branch of the Max-Planck-Institut fur Plasmaphysik, Germany. The superconducting magnet system consists of 50 non-planar coils, 20 planar coils, a superconducting bus system, and 14 current leads. It is organized in seven electrical circuits with ten coils, the bus system for the interconnection, and two current leads each. The magnet system is cooled by supercritical helium. It is enclosed in a cryostat with an outer diameter of 16 m formed by the plasma vessel and the outer vessel. There are five different types of nonplanar coils having dimensions of 3.5 x 2.5 x 1.5 meters in maximum and a weight of about 5.5 tons. The two different types of the planar coils are nearly circular coils with a diameter of up to 4.5 m and a weight of about 3 tons. The super-conducting bus bar system connects the coils to each other and provides the connection to the current leads inside the cryostat. All types of coils and the bus system use the W7-X superconductor, a forced flow cable-in-conduit superconductor with 243 copper stabilized NbTi strands with an outer aluminum-alloy jacket. The current leads provide the transfer of the electrical current from the room temperature bus bar system outside the cryostat to the superconducting parts inside the cryostat. Their special feature is the upside-down orientation with the cold end at the top.
引用
收藏
页码:769 / 776
页数:8
相关论文
共 50 条
  • [31] Demonstration of reduced neoclassical energy transport in Wendelstein 7-X
    Beidler, C. D.
    Smith, H. M.
    Alonso, A.
    Andreeva, T.
    Baldzuhn, J.
    Beurskens, M. N. A.
    Borchardt, M.
    Bozhenkov, S. A.
    Brunner, K. J.
    Damm, H.
    Drevlak, M.
    Ford, O. P.
    Fuchert, G.
    Geiger, J.
    Helander, P.
    Hergenhahn, U.
    Hirsch, M.
    Hoefel, U.
    Kazakov, Ye. O.
    Kleiber, R.
    Krychowiak, M.
    Kwak, S.
    Langenberg, A.
    Laqua, H. P.
    Neuner, U.
    Pablant, N. A.
    Pasch, E.
    Pavone, A.
    Pedersen, T. S.
    Rahbarnia, K.
    Schilling, J.
    Scott, E. R.
    Stange, T.
    Svensson, J.
    Thomsen, H.
    Turkin, Y.
    Warmer, F.
    Wolf, R. C.
    Zhang, D.
    NATURE, 2021, 596 (7871) : 221 - +
  • [32] First results from divertor operation in Wendelstein 7-X
    Pedersen, Thomas Sunn
    Koenig, Ralf
    Krychowiak, Maciej
    Jakubowski, Marcin
    Baldzuhn, Juergen
    Bozhenkov, Sergey
    Fuchert, Golo
    Langenberg, Andreas
    Niemann, Holger
    Zhang, Daihong
    Rahbarnia, Kian
    Bosch, Hans-Stephan
    Kazakov, Yevgen
    Brezinsek, Sebastijan
    Gao, Yu
    Pablant, Novimir
    PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (01)
  • [33] Multi-delay coherence imaging spectroscopy optimized for ion temperature measurements in the divertor plasma of the Wendelstein 7-X stellarator
    Kriete, David M.
    Perseo, Valeria
    Gradic, Dorothea
    Ennis, David A.
    Koenig, Ralf
    Maurer, David A.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (07)
  • [34] Wendelstein 7-X Trim Coils-Component Safety Aspects and Commissioning Strategy
    Risse, Konrad
    Fuellenbach, Frank
    Rummel, Thomas
    Mardenfeld, Michael
    Zhao, Xin
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2014, 42 (03) : 449 - 452
  • [35] Status of HTS current leads for WENDELSTEIN 7-X and JT-60SA
    Fietz, W. H.
    Heller, R.
    Kienzler, A.
    Lietzow, R.
    FUSION ENGINEERING AND DESIGN, 2009, 84 (2-6) : 776 - 779
  • [36] Preparing the operation of Wendelstein 7-X in the steady-state regime
    Bosch, H. S.
    van Eeten, P.
    Grulke, O.
    Braeuer, T.
    Degenkolbe, S.
    Nagel, M.
    Rummel, T.
    Schacht, J.
    Spring, A.
    Winter, A.
    FUSION ENGINEERING AND DESIGN, 2023, 193
  • [37] Modeling resistive-inductive evolution of currents in Wendelstein 7-X
    van Ham, L.
    Lazerson, S. A.
    Schmitt, J. C.
    Lee, B. F.
    Beurskens, M.
    Brunner, K. J.
    Chaudhary, N.
    Fuchert, G.
    Geiger, J.
    Hirsch, M.
    Knauer, J.
    Langenberg, A.
    Oosterbeek, J. W.
    Pablant, N.
    Pasch, E.
    Rahbarnia, K.
    Weir, G.
    NUCLEAR FUSION, 2025, 65 (03)
  • [38] MULTIPHYSICS ANALYSIS OF THE WENDELSTEIN 7-X ACTIVELY COOLED SCRAPER ELEMENT
    Clark, Emily
    Lumsdaine, Arnold
    Boscary, Jean
    Ekici, Kivanc
    Harris, Jeffrey
    McGinnis, Dean
    Lore, Jeremy D.
    Peacock, Alan
    Tretter, Joerg
    FUSION SCIENCE AND TECHNOLOGY, 2015, 68 (03) : 635 - 639
  • [39] Impact of the temperature ratio on turbulent impurity transport in Wendelstein 7-X
    Wegner, Th.
    Alcuson, J. A.
    Geiger, B.
    Stechow, A. v.
    Xanthopoulos, P.
    Angioni, C.
    Beurskens, M. N. A.
    Boettger, L. -G.
    Bozhenkov, S. A.
    Brunner, K. J.
    Burhenn, R.
    Buttenschoen, B.
    Damm, H.
    Edlund, E.
    Ford, O. P.
    Fuchert, G.
    Grulke, O.
    Huang, Z.
    Knauer, J.
    Kunkel, F.
    Langenberg, A.
    Pablant, N. A.
    Pasch, E.
    Rahbarnia, K.
    Schilling, J.
    Thomsen, H.
    Vano, L.
    NUCLEAR FUSION, 2020, 60 (12)
  • [40] Engineering Lessons Learned in the Assembly, Commissioning, Initial Operation and in the Further Upgrading of Wendelstein 7-X
    Wegener, Lutz
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2020, 48 (06) : 1641 - 1648