Towards Whole Placenta Segmentation at Late Gestation Using Multi-view Ultrasound Images

被引:16
作者
Zimmer, Veronika A. [1 ]
Gomez, Alberto [1 ]
Skelton, Emily [1 ]
Toussaint, Nicolas [1 ]
Zhang, Tong [1 ]
Khanal, Bishesh [1 ,2 ]
Wright, Robert [1 ]
Noh, Yohan [1 ,3 ]
Ho, Alison [4 ]
Matthew, Jacqueline [1 ]
Hajnal, Joseph V. [1 ]
Schnabel, Julia A. [1 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[2] Nepal Appl Math & Informat Inst Res NAAMII, Kathmandu, Nepal
[3] Brunel Univ London, Dept Mech & Aerosp Engn, Uxbridge, Middx, England
[4] Kings Coll London, Sch Life Course Sci, Dept Women & Childrens Hlth, London, England
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT V | 2019年 / 11768卷
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
D O I
10.1007/978-3-030-32254-0_70
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a method to extract the human placenta at late gestation using multi-view 3D US images. This is the first step towards automatic quantification of placental volume and morphology from US images along the whole pregnancy beyond early stages (where the entire placenta can be captured with a single 3D US image). Our method uses 3D US images from different views acquired with a multi-probe system. A whole placenta segmentation is obtained from these images by using a novel technique based on 3D convolutional neural networks. We demonstrate the performance of our method on 3D US images of the placenta in the last trimester. We achieve a high Dice overlap of up to 0.8 with respect to manual annotations, and the derived placental volumes are comparable to corresponding volumes extracted from MR.
引用
收藏
页码:628 / 636
页数:9
相关论文
共 14 条
  • [1] Fast Registration of 3D Fetal Ultrasound Images Using Learned Corresponding Salient Points
    Gomez, Alberto
    Bhatia, Kanwal
    Tharin, Sarjana
    Housden, James
    Toussaint, Nicolas
    Schnabel, Julia A.
    [J]. FETAL, INFANT AND OPHTHALMIC MEDICAL IMAGE ANALYSIS, 2017, 10554 : 33 - 41
  • [2] Regional Differences in End-Diastolic Volumes between 3D Echo and CMR in HLHS Patients
    Gomez, Alberto
    Oktay, Ozan
    Rueckert, Daniel
    Penney, Graeme P.
    Schnabel, Julia A.
    Simpson, John M.
    Pushparajah, Kuberan
    [J]. FRONTIERS IN PEDIATRICS, 2016, 4
  • [3] A survey on deep learning in medical image analysis
    Litjens, Geert
    Kooi, Thijs
    Bejnordi, Babak Ehteshami
    Setio, Arnaud Arindra Adiyoso
    Ciompi, Francesco
    Ghafoorian, Mohsen
    van der Laak, Jeroen A. W. M.
    van Ginneken, Bram
    Sanchez, Clara I.
    [J]. MEDICAL IMAGE ANALYSIS, 2017, 42 : 60 - 88
  • [4] Fully automated, real-time 3D ultrasound segmentation to estimate first trimester placental volume using deep learning
    Looney, Padraig
    Stevenson, Gordon N.
    Nicolaides, Kypros H.
    Plasencia, Walter
    Molloholli, Malid
    Natsis, Stavros
    Collins, Sally L.
    [J]. JCI INSIGHT, 2018, 3 (11)
  • [5] Placenta Maps: In Utero Placental Health Assessment of the Human Fetus
    Miao, Haichao
    Mistelbauer, Gabriel
    Karimov, Alexey
    Alansary, Amir
    Davidson, Alice
    Lloyd, David F. A.
    Damodaram, Mellisa
    Story, Lisa
    Hutter, Jana
    Hajnal, Joseph V.
    Rutherford, Mary
    Preim, Bernhard
    Kainz, Bernhard
    Groeller, M. Eduard
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (06) : 1612 - 1623
  • [6] Ni D, 2008, LECT NOTES COMPUT SC, V5242, P52
  • [7] Combining Deep Learning and Multi-atlas Label Fusion for Automated Placenta Segmentation from 3DUS
    Oguz, Baris U.
    Wang, Jiancong
    Yushkevich, Natalie
    Pouch, Alison
    Gee, James
    Yushkevich, Paul A.
    Schwartz, Nadav
    Oguz, Ipek
    [J]. DATA DRIVEN TREATMENT RESPONSE ASSESSMENT AND PRETERM, PERINATAL, AND PAEDIATRIC IMAGE ANALYSIS, 2018, 11076 : 138 - 148
  • [8] U-Net: Convolutional Networks for Biomedical Image Segmentation
    Ronneberger, Olaf
    Fischer, Philipp
    Brox, Thomas
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 234 - 241
  • [9] 3-D ULTRASOUND SEGMENTATION OF THE PLACENTA USING THE RANDOM WALKER ALGORITHM: RELIABILITY AND AGREEMENT
    Stevenson, Gordon N.
    Collins, Sally L.
    Ding, Jane
    Impey, Lawrence
    Noble, J. Alison
    [J]. ULTRASOUND IN MEDICINE AND BIOLOGY, 2015, 41 (12) : 3182 - 3193
  • [10] Fully automatic 3D reconstruction of the placenta and its peripheral vasculature in intrauterine fetal MRI
    Torrents-Barrena, Jordina
    Piella, Gemma
    Masoller, Narcis
    Gratacos, Eduard
    Eixarch, Elisenda
    Ceresa, Mario
    Gonzalez Ballester, Miguel Angel
    [J]. MEDICAL IMAGE ANALYSIS, 2019, 54 : 263 - 279