GAN-Based Ultrasound Localization Microscopy

被引:1
作者
Gu, Wenting [1 ]
Yan, Zhuangzhi [1 ]
Li, Boyi [2 ]
Liu, Chengcheng [2 ]
Ta, Dean [2 ]
Liu, Xin [2 ]
机构
[1] Shanghai Univ, Sch Commun & Informat Engn, Shanghai, Peoples R China
[2] Fudan Univ, Acad Engn & Technol, Shanghai, Peoples R China
来源
2022 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS) | 2022年
关键词
Ultrasound localization microscopy; generative adversarial networks; deep learning;
D O I
10.1109/IUS54386.2022.9957520
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Ultrasound localization microscopy (ULM) breaks the acoustics diffraction limit and allows the imaging of the microvasculature within organs and tumors at sub-wavelength resolution while maintaining the imaging penetration. However, the reconstruction quality of localization-based methods highly depends on sufficient ultrasound data frames with sparsely distributed microbubbles (MBs) in each frame which results in great data storage burden and low processing speed. Here, we proposed a novel method based on generative adversarial networks (GANs) to implement the MB localization in ULM imaging to accelerate the data processing speed. The synthetic results indicate that the proposed method performs well in MB localization task with great robustness to overlapping MBs and achieves higher localization speed once the network be well trained.
引用
收藏
页数:4
相关论文
共 12 条
  • [1] SUSHI: Sparsity-Based Ultrasound Super-Resolution Hemodynamic Imaging
    Bar-Zion, Avinoam
    Solomon, Oren
    Tremblay-Darveau, Charles
    Adam, Dan
    Eldar, Yonina C.
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2018, 65 (12) : 2365 - 2380
  • [2] SUPER-RESOLUTION ULTRASOUND IMAGING
    Christensen-Jeffries, Kirsten
    Couture, Olivier
    Dayton, Paul A.
    Eldar, Yonina C.
    Hynynen, Kullervo
    Kiessling, Fabian
    O'Reilly, Meaghan
    Pinton, I. Gianmarco F.
    Schmitz, Georg
    Tang, Meng-Xing
    Tanter, Mickael
    Van Sloun, Ruud J. G.
    [J]. ULTRASOUND IN MEDICINE AND BIOLOGY, 2020, 46 (04) : 865 - 891
  • [3] Ultrasound Localization Microscopy and Super-Resolution: A State of the Art
    Couture, Olivier
    Hingot, Vincent
    Heiles, Baptiste
    Muleki-Seya, Pauline
    Tanter, Mickael
    [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2018, 65 (08) : 1304 - 1320
  • [4] ULTRAFAST IMAGING OF ULTRASOUND CONTRAST AGENTS
    Couture, Olivier
    Bannouf, Souad
    Montaldo, Gabriel
    Aubry, Jean-Francois
    Fink, Mathias
    Tanter, Mickael
    [J]. ULTRASOUND IN MEDICINE AND BIOLOGY, 2009, 35 (11) : 1908 - 1916
  • [5] Hoskins P, 2019, DIAGNOSTIC ULTRASOUN, V3rd
  • [6] Image-to-Image Translation with Conditional Adversarial Networks
    Isola, Phillip
    Zhu, Jun-Yan
    Zhou, Tinghui
    Efros, Alexei A.
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 5967 - 5976
  • [7] Deep Learning for Ultrasound Localization Microscopy
    Liu, Xin
    Zhou, Tianyang
    Lu, Mengyang
    Yang, Yi
    He, Qiong
    Luo, Jianwen
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (10) : 3064 - 3078
  • [8] A super-resolution ultrasound method for brain vascular mapping
    O'Reilly, Meaghan A.
    Hynynen, Kullervo
    [J]. MEDICAL PHYSICS, 2013, 40 (11)
  • [9] Deep learning massively accelerates super-resolution localization microscopy
    Ouyang, Wei
    Aristov, Andrey
    Lelek, Mickael
    Hao, Xian
    Zimmer, Christophe
    [J]. NATURE BIOTECHNOLOGY, 2018, 36 (05) : 460 - +
  • [10] Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images
    Pereira, Sergio
    Pinto, Adriano
    Alves, Victor
    Silva, Carlos A.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) : 1240 - 1251