GAN-Based Ultrasound Localization Microscopy

被引:2
作者
Gu, Wenting [1 ]
Yan, Zhuangzhi [1 ]
Li, Boyi [2 ]
Liu, Chengcheng [2 ]
Ta, Dean [2 ]
Liu, Xin [2 ]
机构
[1] Shanghai Univ, Sch Commun & Informat Engn, Shanghai, Peoples R China
[2] Fudan Univ, Acad Engn & Technol, Shanghai, Peoples R China
来源
2022 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS) | 2022年
关键词
Ultrasound localization microscopy; generative adversarial networks; deep learning;
D O I
10.1109/IUS54386.2022.9957520
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Ultrasound localization microscopy (ULM) breaks the acoustics diffraction limit and allows the imaging of the microvasculature within organs and tumors at sub-wavelength resolution while maintaining the imaging penetration. However, the reconstruction quality of localization-based methods highly depends on sufficient ultrasound data frames with sparsely distributed microbubbles (MBs) in each frame which results in great data storage burden and low processing speed. Here, we proposed a novel method based on generative adversarial networks (GANs) to implement the MB localization in ULM imaging to accelerate the data processing speed. The synthetic results indicate that the proposed method performs well in MB localization task with great robustness to overlapping MBs and achieves higher localization speed once the network be well trained.
引用
收藏
页数:4
相关论文
共 12 条
[1]   SUSHI: Sparsity-Based Ultrasound Super-Resolution Hemodynamic Imaging [J].
Bar-Zion, Avinoam ;
Solomon, Oren ;
Tremblay-Darveau, Charles ;
Adam, Dan ;
Eldar, Yonina C. .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2018, 65 (12) :2365-2380
[2]   SUPER-RESOLUTION ULTRASOUND IMAGING [J].
Christensen-Jeffries, Kirsten ;
Couture, Olivier ;
Dayton, Paul A. ;
Eldar, Yonina C. ;
Hynynen, Kullervo ;
Kiessling, Fabian ;
O'Reilly, Meaghan ;
Pinton, I. Gianmarco F. ;
Schmitz, Georg ;
Tang, Meng-Xing ;
Tanter, Mickael ;
Van Sloun, Ruud J. G. .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2020, 46 (04) :865-891
[3]   Ultrasound Localization Microscopy and Super-Resolution: A State of the Art [J].
Couture, Olivier ;
Hingot, Vincent ;
Heiles, Baptiste ;
Muleki-Seya, Pauline ;
Tanter, Mickael .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2018, 65 (08) :1304-1320
[4]   ULTRAFAST IMAGING OF ULTRASOUND CONTRAST AGENTS [J].
Couture, Olivier ;
Bannouf, Souad ;
Montaldo, Gabriel ;
Aubry, Jean-Francois ;
Fink, Mathias ;
Tanter, Mickael .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2009, 35 (11) :1908-1916
[5]  
Hoskins P., 2010, Diagnostic Ultrasound: Physics and Equipment, V2nd
[6]   Image-to-Image Translation with Conditional Adversarial Networks [J].
Isola, Phillip ;
Zhu, Jun-Yan ;
Zhou, Tinghui ;
Efros, Alexei A. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5967-5976
[7]   Deep Learning for Ultrasound Localization Microscopy [J].
Liu, Xin ;
Zhou, Tianyang ;
Lu, Mengyang ;
Yang, Yi ;
He, Qiong ;
Luo, Jianwen .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (10) :3064-3078
[8]   A super-resolution ultrasound method for brain vascular mapping [J].
O'Reilly, Meaghan A. ;
Hynynen, Kullervo .
MEDICAL PHYSICS, 2013, 40 (11)
[9]   Deep learning massively accelerates super-resolution localization microscopy [J].
Ouyang, Wei ;
Aristov, Andrey ;
Lelek, Mickael ;
Hao, Xian ;
Zimmer, Christophe .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :460-+
[10]   Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images [J].
Pereira, Sergio ;
Pinto, Adriano ;
Alves, Victor ;
Silva, Carlos A. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1240-1251