GENERA OF BRILL-NOETHER CURVES AND STAIRCASE PATHS IN YOUNG TABLEAUX

被引:16
|
作者
Chan, Melody [1 ]
Martin, Alberto Lopez [2 ]
Pflueger, Nathan [1 ,3 ]
Teixidor i Bigas, Montserrat [4 ]
机构
[1] Brown Univ, Dept Math, Box 1917, Providence, RI 02912 USA
[2] IMPA, Estr Dona Castorina 110, BR-22460902 Rio De Janeiro, RJ, Brazil
[3] Amherst Coll, Dept Math & Stat, Amherst, MA 01002 USA
[4] Tufts Univ, Dept Math, Medford, MA 02155 USA
关键词
LIMIT LINEAR SERIES; SPECIAL DIVISORS; DEGENERACY LOCI; THEOREM;
D O I
10.1090/tran/7044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we compute the genus of the variety of linear series of rank r and degree d on a general curve of genus g, with ramification at least a and beta at two given points, when that variety is 1-dimensional. Our proof uses degenerations and limit linear series along with an analysis of random staircase paths in Young tableaux, and produces an explicit scheme-theoretic description of the limit linear series of fixed rank and degree on a generic chain of elliptic curves when that scheme is itself a curve.
引用
收藏
页码:3405 / 3439
页数:35
相关论文
共 23 条
  • [1] Brill-Noether generality of binary curves
    He, Xiang
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (04): : 787 - 807
  • [2] Brill-Noether loci
    Teixidor i Bigas, Montserrat
    MANUSCRIPTA MATHEMATICA, 2025, 176 (01)
  • [3] Components of Brill-Noether Loci for Curves with Fixed Gonality
    Cook-Powell, Kaelin
    Jensen, David
    MICHIGAN MATHEMATICAL JOURNAL, 2022, 71 (01) : 19 - 45
  • [4] Invariants of the Brill-Noether curve
    Castorena, Abel
    Martin, Alberto Lopez
    Bigas, Montserrat Teixidor I.
    ADVANCES IN GEOMETRY, 2017, 17 (01) : 39 - 52
  • [5] Brill-Noether varieties of k-gonal curves
    Pflueger, Nathan
    ADVANCES IN MATHEMATICS, 2017, 312 : 46 - 63
  • [6] Brill-Noether loci with ramification at two points
    Teixidor-I-Bigas, Montserrat
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (03) : 1217 - 1232
  • [7] A tropical proof of the Brill-Noether Theorem
    Cools, Filip
    Draisma, Jan
    Payne, Sam
    Robeva, Elina
    ADVANCES IN MATHEMATICS, 2012, 230 (02) : 759 - 776
  • [8] Algebraic and combinatorial Brill-Noether theory
    Caporaso, Lucia
    COMPACT MODULI SPACES AND VECTOR BUNDLES, 2012, 564 : 69 - 85
  • [9] Brill-Noether theory for cyclic covers
    Schwarz, Irene
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2017, 221 (10) : 2420 - 2430
  • [10] Nonemptiness and smoothness of twisted Brill-Noether loci
    Hitching, George H.
    Hoff, Michael
    Newstead, Peter E.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (02) : 685 - 709