Octonionic electrodynamics

被引:64
作者
Gogberashvili, M. [1 ]
机构
[1] Andronikashvili Inst Phys, GE-0177 Tbilisi, Georgia
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2006年 / 39卷 / 22期
关键词
D O I
10.1088/0305-4470/39/22/020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Dirac's operator and Maxwell's equations in vacuum are derived in the algebra of split octonions. The approximations which lead to classical Maxwell-Heaviside equations from full octonionic equations are given. The nonexistence of magnetic monopoles in classical electrodynamics is connected with the use of the associativity limit.
引用
收藏
页码:7099 / 7104
页数:6
相关论文
共 72 条
[51]   The symmetry algebras of Euclidean M-theory [J].
Lukierski, J ;
Toppan, F .
PHYSICS LETTERS B, 2004, 584 (3-4) :315-322
[52]   Octonionic M-theory and D=11 generalized conformal and superconformal algebras [J].
Lukierski, J ;
Toppan, F .
PHYSICS LETTERS B, 2003, 567 (1-2) :125-132
[53]   Generalized space-time supersymmetries, division algebras and octonionic M-theory [J].
Lukierski, J ;
Toppan, F .
PHYSICS LETTERS B, 2002, 539 (3-4) :266-276
[54]  
MABUEJO J, 2002, PHYS REV LETT, V88
[55]  
Marques S., 1988, Journal of Mathematical Physics, V29, P2127, DOI 10.1063/1.527838
[56]   THE DIRAC-EQUATION IN A NON-RIEMANNIAN MANIFOLD .2. AN ANALYSIS USING AN INTERNAL LOCAL N-DIMENSIONAL SPACE OF THE YANG-MILLS TYPE [J].
MARQUESBONHAM, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (06) :1478-1482
[57]   THE DIRAC-EQUATION IN A NON-RIEMANNIAN MANIFOLD III - AN ANALYSIS USING THE ALGEBRA OF QUATERNIONS AND OCTONIONS [J].
MARQUESBONHAM, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) :1383-1394
[58]  
Maxwell JC., 1998, TREATISE ELECT MAGNE
[59]   OCTONIONS, QUARKS AND QCD [J].
MORITA, K .
PROGRESS OF THEORETICAL PHYSICS, 1981, 65 (02) :787-790
[60]   QUATERNIONIC WEINBERG-SALAM THEORY [J].
MORITA, K .
PROGRESS OF THEORETICAL PHYSICS, 1982, 67 (06) :1860-1876