Octonionic electrodynamics

被引:64
作者
Gogberashvili, M. [1 ]
机构
[1] Andronikashvili Inst Phys, GE-0177 Tbilisi, Georgia
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2006年 / 39卷 / 22期
关键词
D O I
10.1088/0305-4470/39/22/020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Dirac's operator and Maxwell's equations in vacuum are derived in the algebra of split octonions. The approximations which lead to classical Maxwell-Heaviside equations from full octonionic equations are given. The nonexistence of magnetic monopoles in classical electrodynamics is connected with the use of the associativity limit.
引用
收藏
页码:7099 / 7104
页数:6
相关论文
共 72 条
[1]  
Adler S. L., 1995, QUATERNION QUANTUM M
[2]   QUATERNIONIC CHROMODYNAMICS AS A THEORY OF COMPOSITE QUARKS AND LEPTONS [J].
ADLER, SL .
PHYSICAL REVIEW D, 1980, 21 (10) :2903-2915
[3]   Doubly-special relativity: First results and key open problems [J].
Amelino-Camelia, G .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2002, 11 (10) :1643-1669
[4]  
[Anonymous], ATOMBAU SPEKTRALLINI
[5]  
[Anonymous], 1995, INTRO OCTONIONS OTHE
[6]  
Asanov G.S., 1985, Finsler Geometry, Relativity and Gauge Theories
[7]  
Baez JC, 2002, B AM MATH SOC, V39, P145
[8]  
Baylis W.E., 1999, ELECTRODYNAMICS MODE
[9]   Eight-dimensional quantum Hall effect and "octonions" [J].
Bernevig, BA ;
Hu, JP ;
Toumbas, N ;
Zhang, SC .
PHYSICAL REVIEW LETTERS, 2003, 91 (23)
[10]  
Carrion HL, 2003, J HIGH ENERGY PHYS