Generative Models for Fast Calorimeter Simulation: the LHCb case

被引:37
作者
Chekalina, Viktoria [1 ,2 ]
Orlova, Elena [3 ]
Ratnikov, Fedor [1 ,2 ]
Ulyanov, Dmitry [3 ]
Ustyuzhanin, Andrey [1 ,2 ]
Zakharov, Egor [3 ]
机构
[1] NRU Higher Sch Econ, Moscow, Russia
[2] Yandex Sch Data Anal, Moscow, Russia
[3] Skolkovo Inst Sci & Technol, Moscow, Russia
来源
23RD INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2018) | 2019年 / 214卷
基金
俄罗斯科学基金会;
关键词
D O I
10.1051/epjconf/201921402034
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Simulation is one of the key components in high energy physics. Historically it relies on the Monte Carlo methods which require a tremendous amount of computation resources. These methods may have difficulties with the expected High Luminosity Large Hadron Collider (HL-LHC) needs, so the experiments are in urgent need of new fast simulation techniques. We introduce a new Deep Learning framework based on Generative Adversarial Networks which can be faster than traditional simulation methods by 5 orders of magnitude with reasonable simulation accuracy. This approach will allow physicists to produce a sufficient amount of simulated data needed by the next HL-LHC experiments using limited computing resources.
引用
收藏
页数:8
相关论文
共 16 条
[1]   The LHCb Detector at the LHC [J].
Alves, A. Augusto, Jr. ;
Andrade Filho, L. M. ;
Barbosa, A. F. ;
Bediaga, I. ;
Cernicchiaro, G. ;
Guerrer, G. ;
Lima, H. P., Jr. ;
Machado, A. A. ;
Magnin, J. ;
Marujo, F. ;
de Miranda, J. M. ;
Reis, A. ;
Santos, A. ;
Toledo, A. ;
Akiba, K. ;
Amato, S. ;
de Paula, B. ;
de Paula, L. ;
da Silva, T. ;
Gandelman, M. ;
Lopes, J. H. ;
Marechal, B. ;
Moraes, D. ;
Polycarpo, E. ;
Rodrigues, F. ;
Ballansat, J. ;
Bastian, Y. ;
Boget, D. ;
De Bonis, I. ;
Coco, V. ;
David, P. Y. ;
Decamp, D. ;
Delebecque, P. ;
Drancourt, C. ;
Dumont-Dayot, N. ;
Girard, C. ;
Lieunard, B. ;
Minard, M. N. ;
Pietrzyk, B. ;
Rambure, T. ;
Rospabe, G. ;
T'Jampens, S. ;
Ajaltouni, Z. ;
Bohner, G. ;
Bonnefoy, R. ;
Borras, D. ;
Carloganu, C. ;
Chanal, H. ;
Conte, E. ;
Cornat, R. .
JOURNAL OF INSTRUMENTATION, 2008, 3
[2]  
[Anonymous], 2017, ARXIV170105927
[3]  
[Anonymous], 2017, ARXIV170107875
[4]  
ATLAS C, 2010, ATLCOMPHYS2010838
[5]  
Bozzi C., 2014, CERNLHCBPUB2015004
[6]  
Flynn J., 2015, CERNRRB2015117
[7]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[8]  
Grindhammer G., 2000, HEPEX0001020 ARXIV
[9]  
Gulrajani I., 2017, Advances in neural information processing systems, P5769, DOI [10.5555/3295222.3295327, DOI 10.5555/3295222.3295327]
[10]  
Isola P, 2017, PROC CVPR IEEE, P1125, DOI DOI 10.1109/CVPR.2017.632