Stability of standing waves for NLS with perturbed Lame potential

被引:13
作者
Cuccagna, S [1 ]
机构
[1] DISMI Univ Modena & Reggio Emilia, I-42100 Reggio Emilia, Italy
关键词
D O I
10.1016/j.jde.2005.07.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We perturb a linear Schrodinger equation with Lame potential with a small positive or negative potential. The new perturbed operator has one or more eigenvalues, at most one in each spectral gap. We then add a nonlinear term and study the stability of the corresponding nonlinear stationary waves. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:112 / 160
页数:49
相关论文
共 52 条
[1]  
[Anonymous], 1992, J SOVIET MATH
[2]  
[Anonymous], 2002, ADV THEOR MATH PHYS
[3]  
[Anonymous], SOUND PROPAGATION ST
[4]  
Buslaev V., 1993, St. Petersburg Math. J., V4, P1111
[5]  
BUSLAEV V, 1995, NONLINEAR EVOLUTION, V2, P75
[6]   On asymptotic stability of solitary waves for nonlinear Schrodinger equations [J].
Buslaev, VS ;
Sulem, C .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (03) :419-475
[7]  
CAI K, 2004, DISPERSION SCHRODING
[8]  
Cazenave T., 2003, COURANT LECT NOTES M
[9]   CONTINUITY OF THE S-MATRIX FOR THE PERTURBED HILLS EQUATION [J].
CLEMENCE, DP ;
KLAUS, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (07) :3285-3300
[10]   Spectra of positive and negative energies in the linearized NLS problem [J].
Cuccagna, S ;
Pelinovsky, D ;
Vougalter, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (01) :1-29