Two-dimensional solutions of a mean field equation on flat tori

被引:0
作者
Du, Zhuoran [1 ]
Gui, Changfeng [2 ]
机构
[1] Hunan Univ, Sch Math, Changsha 410082, Hunan, Peoples R China
[2] Univ Texas San Antonio, Dept Math, San Antonio, TX 78249 USA
关键词
Mean field equation; Torus; Bifurcation; Symmetry; GAUSSIAN CURVATURE EQUATION; ONE-DIMENSIONAL SYMMETRY; SIMONS HIGGS-MODEL; STATISTICAL-MECHANICS; CONFORMAL METRICS; STATIONARY FLOWS; EULER EQUATIONS; INEQUALITY; UNIQUENESS; BLOW;
D O I
10.1016/j.jde.2020.07.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the mean field equation on the flat torus T-sigma := C/(Z + Z sigma) Delta u + rho(e(u)/integral(T sigma)e(u) - 1/vertical bar T-sigma vertical bar) = 0, where rho is a real parameter. For a general flat torus, we obtain the existence of two-dimensional solutions bifurcating from the trivial solution at each eigenvalue (up to a multiplicative constant vertical bar T-sigma vertical bar) of Laplace operator on the torus in the space of even symmetric functions. We further characterize the subset of all eigenvalues through which only one bifurcating curve passes. Finally local convexity near bifurcating points of the solution curves are obtained. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:10239 / 10276
页数:38
相关论文
共 40 条
[1]  
Bartolucci D., ARXIV190206934
[2]   Non-degeneracy, Mean Field Equations and the Onsager Theory of 2D Turbulence [J].
Bartolucci, Daniele ;
Jevnikar, Aleks ;
Lee, Youngae ;
Yang, Wen .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 230 (01) :397-426
[3]   A SUP PLUS INF INEQUALITY FOR SOME NONLINEAR ELLIPTIC-EQUATIONS INVOLVING EXPONENTIAL NONLINEARITIES [J].
BREZIS, H ;
LI, YY ;
SHAFRIR, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 115 (02) :344-358
[4]   UNIFORM ESTIMATES AND BLOW UP BEHAVIOR FOR SOLUTIONS OF -DELTA-U = V(X)EU IN 2 DIMENSIONS [J].
BREZIS, H ;
MERLE, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (8-9) :1223-1253
[5]   A mean field equation on a torus:: One-dimensional symmetry of solutions [J].
Cabré, X ;
Lucia, M ;
Sanchón, M .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (09) :1315-1330
[6]   VORTEX CONDENSATION IN THE CHERN-SIMONS HIGGS-MODEL - AN EXISTENCE THEOREM [J].
CAFFARELLI, LA ;
YANG, YS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 168 (02) :321-336
[7]   A SPECIAL-CLASS OF STATIONARY FLOWS FOR 2-DIMENSIONAL EULER EQUATIONS - A STATISTICAL-MECHANICS DESCRIPTION .2. [J].
CAGLIOTI, E ;
LIONS, PL ;
MARCHIORO, C ;
PULVIRENTI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 174 (02) :229-260
[8]   A SPECIAL-CLASS OF STATIONARY FLOWS FOR 2-DIMENSIONAL EULER EQUATIONS - A STATISTICAL-MECHANICS DESCRIPTION [J].
CAGLIOTI, E ;
LIONS, PL ;
MARCHIORO, C ;
PULVIRENTI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 143 (03) :501-525
[9]  
Chang S-YA., 2003, NEW STUD ADV MATH, P61
[10]   ROTATIONAL SYMMETRY OF SOLUTIONS OF SOME NONLINEAR PROBLEMS IN STATISTICAL-MECHANICS AND IN GEOMETRY [J].
CHANILLO, S ;
KIESSLING, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 160 (02) :217-238