Storage system for distributed-energy generation using liquid air combined with liquefied natural gas

被引:106
作者
Kim, Juwon [1 ]
Noh, Yeelyong [1 ]
Chang, Daejun [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mech Engn, Daehak Ro 291, Daejeon 34141, South Korea
关键词
Liquid-air energy storage; Liquefied natural gas; Storage efficiency; Renewable-energy penetration; Levelized cost of energy; RENEWABLE ENERGY; THERMODYNAMIC ANALYSIS; POWER-SYSTEM; PLANT; CYCLE;
D O I
10.1016/j.apenergy.2017.12.092
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study proposed a storage-generation system for a distributed-energy generation using liquid air combined with liquefied natural gas (LNG). The system comprised three main sites: the renewable-electricity sources (RESs), liquid-air energy storage (LAES), and natural-gas combustion. The low-priced off-peak electricity generated by the RESs was supplied to the LAES. The supplied electricity and previously stored cold energies liquefied the air. At the on-peak time, the liquid air and LNG were pressurized, re-gasified, and burnt immediately after mixing to generate the high-priced electricity while their cold energy was stored in thermal media. The proposed system was evaluated in terms of the thermodynamic, environmental, and economic performances. Its round-trip and storage efficiencies were 64.2% and 73.4%, respectively. The exergy efficiency of the storage-site, the generation-site, and the system was 70.2%, 75.1%, and 62.1%, respectively. The levelized cost of energy (LCOE) ranged from 142.5 to 190.0 $/MWh depending on the sizes and the storage time. The proposed system was compared to the diabatic compressed air-energy storage (CAES) systems and the adiabatic LAES system. The sensitivity analyses compared the systems for the fixed power output and storage time, and for the option to use natural gas. The proposed system showed better storage and round-trip efficiencies than those of comparison systems. Its LCOE was competitive with those of the compared systems except for the under-ground CAES system. The proposed system was an economic and viable option considering the geographical limitations and the environment impacts of the CAES system.
引用
收藏
页码:1417 / 1432
页数:16
相关论文
共 39 条
[1]  
Akhil A.A., 2013, DOE EPRI 2013 ELECT
[2]  
Alyami HH, STUDY EVALUATION LIQ
[3]   Thermodynamic analysis of energy storage with a liquid air Rankine cycle [J].
Ameel, Bernd ;
T'Joen, Christophe ;
De Kerpel, Kathleen ;
De Jaeger, Peter ;
Huisseune, Henk ;
Van Belleghem, Marnix ;
De Paepe, Michel .
APPLIED THERMAL ENGINEERING, 2013, 52 (01) :130-140
[4]   Energy storage technologies and real life applications - A state of the art review [J].
Aneke, Mathew ;
Wang, Meihong .
APPLIED ENERGY, 2016, 179 :350-377
[5]  
[Anonymous], 2017, METHANEX METHANOL PR
[6]  
[Anonymous], 2016, International Energy Outlook 2016, P290
[7]  
[Anonymous], 2008, MARINE LUBRICANTS IN
[8]   Liquid air energy storage: Potential and challenges of hybrid power plants [J].
Antonelli, Marco ;
Barsali, Stefano ;
Desideri, Umberto ;
Giglioli, Romano ;
Paganucci, Fabrizio ;
Pasini, Gianluca .
APPLIED ENERGY, 2017, 194 :522-529
[9]  
Barron RF, 1985, Cryogenic Systems
[10]   Energy storage and its use with intermittent renewable energy [J].
Barton, JP ;
Infield, DG .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2004, 19 (02) :441-448