共 2 条
Central administration of aminooxyacetate, an inhibitor of H2S production, affects thermoregulatory but not cardiovascular and ventilatory responses to hypercapnia in spontaneously hypertensive rats
被引:8
|作者:
Sabino, Joao Paulo J.
[1
]
Soriano, Renato N.
[2
]
Santos, Bruna M.
[3
]
Donatti, Alberto F.
[4
]
Fernandez, Rodrigo R.
[3
]
da Silva, Glauber S. F.
[5
]
Branco, Luiz G. S.
[3
]
机构:
[1] Univ Fed Piaui, Dept Biophys & Physiol, Teresina, PI, Brazil
[2] Univ Fed Juiz de Fora, Dept Basic Life Sci, Div Physiol & Biophys, Governador Valadares, MG, Brazil
[3] Univ Sao Paulo, Dent Sch Ribeirao Preto, Dept Morphol Physiol & Basic Pathol, Ribeirao Preto, SP, Brazil
[4] Fac Estacio Sa Campo Grande, Campo Grande, MS, Brazil
[5] Univ Fed Minas Gerais, Inst Biol Sci, Dept Physiol & Biophys, Belo Horizonte, MG, Brazil
基金:
巴西圣保罗研究基金会;
关键词:
Arterial blood pressure;
Heart rate;
Pulmonary ventilation;
Deep body temperature;
Fourth ventricle;
CENTRAL HYDROGEN-SULFIDE;
CYSTATHIONINE-BETA-SYNTHASE;
NITRIC-OXIDE;
INDUCED HYPOTHERMIA;
HYPOXIA;
ACID;
LESIONS;
CHEMORECEPTORS;
TEMPERATURE;
INVOLVEMENT;
D O I:
10.1016/j.resp.2019.03.001
中图分类号:
Q4 [生理学];
学科分类号:
071003 ;
摘要:
Hydrogen sulfide (H2S) is classically known for its toxic effects. More recently H2S has been documented as a neuromodulator. Here we investigated the central effects of aminooxyacetate (AOA; inhibitor of the H2S-synthesizing enzyme cystathionine beta-synthase, CBS) on cardiovascular, respiratory and thermoregulatory responses to hypercapnia in spontaneously hypertensive rats (SHR). To attain this goal we measured mean arterial pressure (MAP), heart rate (HR), ventilation (V-E), and deep body temperature (Tb) of SHR and (normotensive) Wistar Kyoto (WKY) rats before and after microinjection of AOA (9 nmol/mu L) or saline into the fourth ventricle immediately followed by 30-min hypercapnia exposure (7% inspired CO2). In saline-treated WKY rats, hypercapnia caused an increase in MAP accompanied by bradycardia, an increase in V-E, and a drop in Tb. In AOA-treated WKY rats exposed to hypercapnia, the drug did not affect the increased MAP, potentiated the bradycardic response, attenuated the increased V-E, and potentiated the drop in Tb. In saline-treated SHR, in comparison to the saline-treated WKY rats, hypercapnia elicited a minor, shorter-lasting increase in MAP with no changes in HR, evoked a greater increase in V-E, and did not induce a drop in Tb. In AOA-treated SHR exposed to hypercapnia, the drug did not change the hypercapnia-induced cardiovascular and ventilatory responses while permitted a drop in Tb. Our findings indicate that AOA, an inhibitor of H2S production, modulates cardiorespiratory and thermoregulatory responses to hypercapnia in normotensive rats, whereas hypertension development in SHR is accompanied by suppression of the AOA effect on the cardiovascular and respiratory responses.
引用
收藏
页码:38 / 46
页数:9
相关论文