Default swap games driven by spectrally negative Levy processes

被引:12
|
作者
Egami, Masahiko [1 ]
Leung, Tim [2 ]
Yamazaki, Kazutoshi [3 ]
机构
[1] Kyoto Univ, Grad Sch Econ, Sakyo Ku, Kyoto 6068501, Japan
[2] Columbia Univ, IEOR Dept, New York, NY 10027 USA
[3] Osaka Univ, Ctr Study Finance & Insurance, Toyonaka, Osaka 5608531, Japan
基金
日本学术振兴会;
关键词
Optimal stopping games; Nash equilibrium; Levy processes; Scale function; Credit default swaps; OPTIMAL STOPPING GAMES; DIVIDEND PROBLEM; OPTIONS;
D O I
10.1016/j.spa.2012.09.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies game-type credit default swaps that allow the protection buyer and seller to raise or reduce their respective positions once prior to default. This leads to the study of an optimal stopping game subject to early default termination. Under a structural credit risk model based on spectrally negative Levy processes, we apply the principles of smooth and continuous fit to identify the equilibrium exercise strategies for the buyer and the seller. We then rigorously prove the existence of the Nash equilibrium and compute the contract value at equilibrium. Numerical examples are provided to illustrate the impacts of default risk and other contractual features on the players' exercise timing at equilibrium. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:347 / 384
页数:38
相关论文
共 50 条
  • [21] OPTIMAL CONTROL WITH ABSOLUTELY CONTINUOUS STRATEGIES FOR SPECTRALLY NEGATIVE LEVY PROCESSES
    Kyprianou, Andreas E.
    Loeffen, Ronnie
    Perez, Jose-Luis
    JOURNAL OF APPLIED PROBABILITY, 2012, 49 (01) : 150 - 166
  • [22] Old and New Examples of Scale Functions for Spectrally Negative Levy Processes
    Hubalek, F.
    Kyprianou, E.
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS VI, 2011, 63 : 119 - +
  • [23] An optimal dividends problem with transaction costs for spectrally negative Levy processes
    Loeffen, R. L.
    INSURANCE MATHEMATICS & ECONOMICS, 2009, 45 (01): : 41 - 48
  • [24] Alternative Approach to the Optimality of the Threshold Strategy for Spectrally Negative Levy Processes
    Shen, Ying
    Yin, Chuan-cun
    Yuen, Kam Chuen
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (04): : 705 - 716
  • [25] LAST EXIT BEFORE AN EXPONENTIAL TIME FOR SPECTRALLY NEGATIVE LEVY PROCESSES
    Baurdoux, E. J.
    JOURNAL OF APPLIED PROBABILITY, 2009, 46 (02) : 542 - 558
  • [26] A martingale review of some fluctuation theory for spectrally negative Levy processes
    Kyprianou, AE
    Palmowski, Z
    SEMINAIRE DE PROBABILITIES XXXVIII, 2005, 1857 : 16 - 29
  • [27] Special, conjugate and complete scale functions for spectrally negative Levy processes
    Kyprianou, A. E.
    Rivero, V.
    ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 : 1672 - 1701
  • [28] On taxed spectrally negative Levy processes with draw-down stopping
    Avram, Florin
    Nhat Linh Vu
    Zhou, Xiaowen
    INSURANCE MATHEMATICS & ECONOMICS, 2017, 76 : 69 - 74
  • [29] A unified approach to ruin probabilities with delays for spectrally negative Levy processes
    Lkabous, Mohamed Amine
    Renaud, Jean-Francois
    SCANDINAVIAN ACTUARIAL JOURNAL, 2019, : 711 - 728
  • [30] Occupation times for spectrally negative Levy processes on the last exit time
    Li, Yingqiu
    Wei, Yushao
    Peng, Zhaohui
    STATISTICS & PROBABILITY LETTERS, 2021, 175