Drug-eluting PCL/graphene oxide nanocomposite scaffolds for enhanced osteogenic differentiation of mesenchymal stem cells

被引:56
作者
Rostami, Fatemeh [1 ]
Tamjid, Elnaz [1 ]
Behmanesh, Mehrdad [1 ,2 ]
机构
[1] Tarbiat Modares Univ, Fac Biol Sci, Dept Nanobiotechnol, Tehran, Iran
[2] Tarbiat Modares Univ, Fac Biol Sci, Dept Genet, Tehran, Iran
来源
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2020年 / 115卷
关键词
Graphene oxide; Nanocomposite; Drug-eluting scaffold; Dexamethasone; Osteogenic differentiation; Electrospinning; REDUCED GRAPHENE OXIDE; CONTROLLED-RELEASE; BONE REGENERATION; DELIVERY; BEHAVIOR; DEXAMETHASONE; SIMVASTATIN; NANOFIBERS; CELLULOSE; REDUCTION;
D O I
10.1016/j.msec.2020.111102
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Recently, drug-eluting nanofibrous scaffolds have attracted a great attention to enhance the cell differentiation through biomimicking the extracellular matrix (ECM) in regenerative medicine. In this study, electrospun nanocomposite polycaprolactone (PCL)-based scaffolds containing synthesized graphene oxide (GO) nanosheets and osteogenic drugs, i.e. dexamethasone and simvastatin were fabricated. The physicochemical and surface properties of the scaffolds were investigated through FTIR, wettability, pH, and drug release studies. The cell viability, differentiation, and biomineralization were studied on mesenchymal stem cells (MSCs) by Alamar Blue, alkaline phosphatase (ALP) activity, and Alizarin Red-S staining, respectively. Uniformly distributed GO (thickness < 1 nm) in PCL nanofibers was observed by electron microscopy. It was revealed that the addition of GO and the drugs improved the hydrophilicity, cell viability, and osteogenic differentiation, in addition to pH changes, in comparison with PCL scaffolds. Despite the notable reduction in the cell viability, significant differentiation was revealed by ALP assay on PCL/GO-Dex scaffolds. Noteworthy, a twofold increase in the osteogenic differentiation was observed in comparison with the cells cultured in osteogenic differentiation medium, while a significant biomineralization was observed. The results of this study indicate the synergistic effect of GO and dexamethasone on improving osteogenic differentiation of drug-eluting nanocomposite scaffolds in bone tissue engineering applications.
引用
收藏
页数:14
相关论文
共 94 条
[1]   Electrically regulated differentiation of skeletal muscle cells on ultrathin graphene-based films [J].
Ahadian, Samad ;
Ramon-Azcon, Javier ;
Chang, Haixin ;
Liang, Xiaobin ;
Kaji, Hirokazu ;
Shiku, Hitoshi ;
Nakajima, Ken ;
Ramalingam, Murugan ;
Wu, Hongkai ;
Matsue, Tomokazu ;
Khademhosseini, Ali .
RSC ADVANCES, 2014, 4 (19) :9534-9541
[2]   Graphene oxide incorporated polycaprolactone/chitosan/collagen electrospun scaffold: Enhanced osteogenic properties for bone tissue engineering [J].
Aidun, Amir ;
Firoozabady, Alireza Safaei ;
Moharrami, Mohammad ;
Ahmadi, Ali ;
Haghighipour, Nooshin ;
Bonakdar, Shahin ;
Faghihi, Shahab .
ARTIFICIAL ORGANS, 2019, 43 (10) :E264-E281
[3]   Controlled release of doxorubicin from electrospun PEO/chitosan/graphene oxide nanocomposite nanofibrous scaffolds [J].
Ardeshirzadeh, Behnaz ;
Anaraki, Nadia Aboutalebi ;
Irani, Mohammad ;
Rad, Leila Roshanfekr ;
Shamshiri, Soodeh .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2015, 48 :384-390
[4]   Chitosan-Functionalized Graphene Oxide as a Nanocarrier for Drug and Gene Delivery [J].
Bao, Hongqian ;
Pan, Yongzheng ;
Ping, Yuan ;
Sahoo, Nanda Gopal ;
Wu, Tongfei ;
Li, Lin ;
Li, Jun ;
Gan, Leong Huat .
SMALL, 2011, 7 (11) :1569-1578
[5]   Evaluation of a biomimetic poly(ε-caprolactone)/β-tricalcium phosphate multispiral scaffold for bone tissue engineering: In vitro and in vivo studies [J].
Baykan, Esra ;
Koc, Aysel ;
Elcin, Ayse Eser ;
Elcin, Yasar Murat .
BIOINTERPHASES, 2014, 9 (02)
[6]   Controlled Release Scaffolds for Bone Tissue Engineering [J].
Cartmell, Sarah .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2009, 98 (02) :430-441
[7]   Next generation bone tissue engineering: non-viral miR-133a inhibition using collagen-nanohydroxyapatite scaffolds rapidly enhances osteogenesis [J].
Castano, Irene Mencia ;
Curtin, Caroline M. ;
Duffy, Garry P. ;
O'Brien, Fergal J. .
SCIENTIFIC REPORTS, 2016, 6
[8]   Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector [J].
Chen, Biao ;
Liu, Min ;
Zhang, Liming ;
Huang, Jie ;
Yao, Jianlin ;
Zhang, Zhijun .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (21) :7736-7741
[9]   In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers [J].
Chouzouri, Georgia ;
Xanthos, Marino .
ACTA BIOMATERIALIA, 2007, 3 (05) :745-756
[10]   Investigation of Graphene/Ag Nanocomposites Synthesis Parameters for Two Different Synthesis Methods [J].
Ciplak, Zafer ;
Yildiz, Nuray ;
Calimli, Ayla .
FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2015, 23 (04) :361-370